Frontiers of Mechanical Engineering >
Dynamic characteristics of an NC table with phase space reconstruction
Received date: 20 Aug 2008
Accepted date: 10 Oct 2008
Published date: 05 Jun 2009
Copyright
The dynamic properties of a numerical control (NC) table directly interfere with the accuracy and surface quality of work pieces machined by a computer numerical control (CNC) machine. Phase space reconstruction is an effective approach for researching dynamic behaviors of a system with measured time series. Based on the theory and method for phase space reconstruction, the correlation dimension, maximum Lyapunov exponent, and dynamic time series measured from the NC table were analyzed. The characteristic quantities such as the power spectrum, phase trajectories, correlation dimension, and maximum Lyapunov exponent are extracted from the measured time series. The chaotic characteristic of the dynamic properties of the NC table is revealed via various approaches. Therefore, an NC table is a nonlinear dynamic system. This research establishes a basis for dynamic system discrimination of a CNC machine.
Linhong WANG , Bo WU , Runsheng DU , Shuzi YANG . Dynamic characteristics of an NC table with phase space reconstruction[J]. Frontiers of Mechanical Engineering, 2009 , 4(2) : 179 -183 . DOI: 10.1007/s11465-009-0018-9
1 |
Kaan E, Yusuf A. High speed CNC design, Part II: modeling and identification of feed drives. International Journal of Machine Tools & Manufacture, 2001, 41: 1487–1509
|
2 |
Chen J S, Huang Y K, Cheng C C. Mechanical model and contouring analysis of high-speed ball-screw drive system with compliance effect. International Journal of Advanced Manufacturing Technology, 2004, 24: 241–250
|
3 |
Kripa K V, Samir A N. The dynamics of lead-screw drives: low-order modeling and experiments. Journal of Dynamic Systems, Measurement, and Control, 2004, 126: 388–396
|
4 |
Chen C L, Jang M J, Lin K C. Modeling and high-precision control of a ball-screw-drive stage. Precision Engineering, 2004, 28: 483–495
|
5 |
Whalley R, Ebrahimi M, Abdul-Ameer A A. Hybrid modeling of machine tool axis drives. International Journal of Machine Tools & Manufacture,2005,45:1560–1576
|
6 |
Whalley R, Ebrahimi M, Abdul-Ameer A A,
|
7 |
George W Y. Modeling machine tool feed servo drives using simulation techniques to predict performance. IEEE Transactions Industry Applications, 1991, 27: 268–274
|
8 |
Shi Xizhi . Signal Processing and Soft Computation. Beijing: Higher Education Press, 2003 (in Chinese)
|
9 |
Li Yang, Yao Jinxiu, Wang Renhuang. Correlation dimension computation and application in extracting fault omens of rotating machinery set. Mechanical and Electrical Engineering and Technology, 2002, 6: 51–59 (in Chinese)
|
10 |
Yang Wenping, Chen Guoding. Fault diagnosis of automobile motor based on Lyapunov exponent. Journal of Vibration Engineering, 2002, 15 (4): 476–478 (in Chinese)
|
11 |
FECIT Sci-Tech Product R&D Center. MATLAB7 Technology and Application of Auxiliary Signal Treatment. Beijing: Electronics Industry Press, 2005 (in Chinese)
|
12 |
Liu Yanzhu, Chen Liqun. Nonlinear vibrations. Beijing: Higher Education Press, 2001 (in Chinese)
|
13 |
Xu Yuxiu, Zhang Jian, Hou Rongtao. Dynamic Fractal Characteristic and Fault Diagnosis Method of Mechanical Systems. Beijing: National Defense Industry Press, 2006 (in Chinese)
|
/
〈 | 〉 |