FEATURE ARTICLE

Personalized biomedical devices & systems for healthcare applications

  • I-Ming CHEN ,
  • Soo Jay PHEE ,
  • Zhiqiang LUO ,
  • Chee Kian LIM
Expand
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore

Received date: 25 Nov 2010

Accepted date: 27 Nov 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

Cite this article

I-Ming CHEN , Soo Jay PHEE , Zhiqiang LUO , Chee Kian LIM . Personalized biomedical devices & systems for healthcare applications[J]. Frontiers of Mechanical Engineering, 0 , 6(1) : 3 -12 . DOI: 10.1007/s11465-011-0209-z

Acknowledgments

The supports to the authors from the Agency for Science, Technology and Research (ASTAR), and Media Development Authority of Singapore are acknowledged.
1
Tröster G. The agenda of wearable healthcare. In: Haux R, Kulikowski C, eds. IMIA Yearbook of Medical Informatics 2005: Ubiquitous Health Care Systems.2005, 125-138

2
Reid P P, Compton W D, Grossman J H, Fanjiang G, eds. Building a Better delivery System: A New Engineering/Health Care Partnership. National Academy Press, 2005

3
Habetha J. The MyHeart project – Fighting cardiovascular diseases by prevention and early diagnosis, In: Proceeding 28th Annual International IEEE EMBS Conference,2006, 6746-6749

4
Milenkovic A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 2006, 29(13-14): 2521-2533

DOI

5
Zephyr. http://www.zephyr-technology.com/bioharness-bt.html

6
IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. In IEEE Std C95.1, 2006

7
Ren H, Meng M Q H, Chen X. Physiological information acquisition through wireless biomedical sensor networks. In: Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China,2005

8
Yang G Z, ed. Body Sensor Networks. London, Springer-Verlag2006

9
Park S, Jayaraman S. E-health and quality of life: The role of the wearable motherboard. In: Lymberis A, DeRossi D, eds. Wearable eHealth Systems for Personalised Health Management, IOS Press, Amsterdam, 2004, 239-252

10
Lukowicz P, Kirstein T, Tröster G.Wearable systems for health care applications. Methods of Information in Medicine,2004, 43(3): 232-238

11
Cottet D, Grzyb J, Kirstein T, Tröster G. Electrical characterization of textile transmission lines. IEEE Transactions on Advanced Packaging, 2003, 26(2): 182-190

DOI

12
Scilingo E P, Lorussi F, Mazzoldi A, De Rossi D. Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 2003, 3(4): 460-467

DOI

13
Dunne L E, Brady S, Smyth B, Diamond D. Initial development and testing of a novel foam-based pressure sensor for wearable sensing. Journal of Neuroengineering and Rehabilitation, 2005, 2(4): 1-7

PMID

14
Otto C, Milenkovic A, Sanders C, Jovanov E. System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 2006, 1(4): 307-326

15
Hill J L. System architecture for wireless sensor networks. Dissertation for the Doctoral Degree.Berkeley: University of California, 2003

16
Cho H C, Marbán E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circulation Research, 2010, 106(4): 674-685

DOI PMID

17
GivenImage. http://www.givenimaging.com/en-us/Pages/GivenWelcomePage.aspx

18
Vicon. http://www.vicon.com

19
Gypsy 7. http://www.metamotion.com/gypsy/gypsy-motion-capture-system.htm

20
Donno M, Palange E, Di Nicola F, Bucci G, Ciancetta F. A new flexible optical fiber goniometer for dynamic angular, measurements: application to human joint movement monitoring. IEEE Transactions on Instrumentation and Measurement, 2008, 57(8): 1614-1620

DOI

21
De Rossi D, Carpi F, Lorussi F, Scilingo E P, Tognetti A. Electroactive fabrics and wearable manmachine interfaces. In: Tao X, ed. Wearable Electronics and Photonics.Textiles: Woodhead Publishing, 2005, 59-80

22
Intersense. http://www.intersense.com

23
Eltaib M E H, Hewit J R. Tactile sensing technology for minimal access surgery- a review. Mechatronics, 2003, 13(10): 1163-1177

DOI

24
Coles T, Meglan D, John N W. The role of haptics in medical training simulators: A survey of the state-of-the-art. IEEE Transactions on Haptics, 2010

25
Lee M H, Nicholls H R. Tactile sensing for mechatronics-a state of the art survey. Mechatronics, 1999, 9(1): 1-31

DOI

26
King C H, Culjat M O, Franco M L, Lewis C E, Grundfest W S, Bisley J W. Tactile feedback induces reduced grasping force in robot-assisted surgery . IEEE Transactions on Haptics, 2009, 2(2): 103-110

DOI

27
Tanaka M, Lévêque J L, Tagami H, Kikuchi K, Chonan S. The “haptic finger”- a new device for monitoring skin condition. Skin Research and Technology, 2003, 9(2): 131-136

DOI PMID

28
Yeatman E M, Mitcheson P D. Energy scavenging. In: Yang G Z, ed. Body Sensor Networks. Springer, 2006, 183-217

29
Glukhovsky A, Iddan G J, Meron G.<patent>US2005228259</patent>, 2005

30
Koplow M, Chen A, Steingart D, Wright P K, Evans J W. Thick film thermoelectric energy harvesting systems for biomedical applications. International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2008),2008, 322-325

31
Yoo H J, Song S J, Cho N, Kim H J. Low energy on-body communication for BSN. Workshop of Body Sensor Networks, 2007, 15-28

32
Krause A, Smailagic A, Siewiorek D P. Context-aware mobile computing: Learning context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing, 2006, 5(2): 113-127

DOI

33
Junker H, Lukowicz P. TrÖster G. Sampling frequency, signal resolution and the accuracy of wearable context recognition systems. In: Proceedings of 8th International Symposium on Wearable Computers (ISWC), 2004

34
Guo T, Zhang L, Liu W, Zhou Z A. Novel solution to power problems in implanted biosensor networks. In: Proceedings of 28th Annual International Conference of IEEE Engineering in Medicine and Biology Society, 2006, 5952-5955

35
Burdea G C. Virtual rehabilitation—benefits and challenges. Methods of Information in Medicine, 2003, 42(5): 519-523

PMID

36
Sveistrup H. Motor rehabilitation using virtual reality. Journal of Neuroengineering and Rehabilitation, 2004, 1(1): 10

DOI PMID

37
Weiss P L, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. In: M E Selzer, L Cohen, F H Gage, S C larke, P W Duncan . (Editors). Textbook of Neural Repair and Rehabilitation. Cambridge: University Press, 2006, 182-197

38
Gunduz A. Human motor control through electrocorticographic brain machine interfaces, <DissertationTip/>, 2008

39
Oviatt S L. Advances in robust multimodal interface design. IEEE Computer Graphics and Applications, 2003, 23(5): 62-68

DOI

40
Carlson M. Understanding the “Mother’s Touch”. Harvard Mahoney Neuroscience Institute Letter to the Brain, 1998, 7(1): 12-13

41
Filed T. Infants’ need for touch. Human Development, 2002, 45(2): 100-103

DOI

42
Harlow H F. The nature of love.http://psychclassics.yorku.ca/Harlow/love.htm

43
Goleman D. The experience of touch: Research points to a critical role. New York Times, February 2, 1988

44
Chouvardas V G, Miliou A N, Hatalis M K. Tactile displays: overview and recent advances. Displays, 2008, 29(3): 185-194

DOI

45
Toney A, Dunne L, Thomas B H, Ashdown S P. A shoulder pad insert vibrotactile display. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC03),2003, 35-44

46
Cholewiak R W, Collins A A. Vibrotactile localization on the arm: effects of place, space, and age. Perception & Psychophysics, 2003, 65(7): 1058-1077

PMID

47
Kyung K U, Ahn M, Kwon D S, Srinivasan M. Perceptual and biomechanical frequency response of human skin: implication for design of tactile displays. In: Proceeding of First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC 2005),2005, 96-101

48
Lieberman J, Breazeal C. TIKL: Development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Transactions on Robotics, 2007, 23(5): 919-926

DOI

49
Lindeman R W, Yanagida Y, Hosaka K, Abe S. The TactaPack: A wireless sensor/actuator package for physical therapy applications. In: Proceeding of 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,2006, 337-341

50
Markow T, Ramakrishnan N, Huang K, Starner T, Eicholtz M, Garrett S, Profita H, Scarlata A, Backus D. Mobile music touch: vibration stimulus in hand rehabilitation. In: Proceeding of 4th International Conference on Pervasive Computing Technologies for Healthcare,2010, 1-8

51
De Rossi D, Carpi F, Lorussi F, Scilingo E P, Tognetti A. Wearable kinesthetic systems and emerging technologies in actuation for upperlimb neurorehabilitation. In: Proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society,2009, 6830-6833

52
Bonanni L, Vaucelle C, Lieberman J, Zuckerman O. TapTap: A haptic wearable for asynchronous distributed touch therapy. In: Extended Abstracts on Human Factors in Computing,2006, 580-585

53
Vaucelle C, Abbas Y. Touch: Sensitive apparel. In: Extended Abstracts on Human Factors in Computing Systems,2007, 2723-2728

54
Koo I M, Jung K, Koo J C, Nam J D, Lee Y K, Choi H R. Development of soft-actuator-based wearable tactile display. IEEE Transactions on Robotics, 2008, 24(3): 549-558

DOI

55
Bark K, Wheeler J, Shull P, Savall J, Cutkosky M. Rotational skin stretch feedback: A wearable haptic display for motion. IEEE Transactions on Haptics,2010, 166-176

56
Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(1): 58-66

DOI PMID

57
Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature, 2000, 405(6785): 417

DOI PMID

58
Pillcam. http://www.givenimaging.com

59
Endocapsule, http://www.olympusamerica.com/msg_section/index.asp

60
MicroCam. http://www.intromedic.com

61
OMOM. http://www.jinshangroup.com

62
Klauser A G, Schindlbeck N E, Müller-Lissner S A. Symptoms in gastro-oesophageal reflux disease. Lancet, 1990, 335(8683): 205-208

DOI PMID

63
Mackay R S, Jacobson B. Endoradiosonde. Nature, 1957, 179(4572): 1239-1240

DOI PMID

64
SmartPill. http://www.smartpillcorp.com

65
Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research, 1999, 16(2): 266-271

DOI PMID

66
Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today, 2000, 3(11): 385-392

DOI PMID

67
Kong K C, Cha J, Jeon D, Cho D I. A rotational micro biopsy device for the capsule endoscope. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada,2005, 1839-1843

68
Park S, Koo K i, Bang S M, Park J Y, Song S Y, Cho D D. Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering, 2008, 18(2): 25-32

DOI

69
Cavallotti C, Piccigalloa M, Susiloa E, Valdastria P, Menciassia A. Paolo Dario. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical, 2009, 156(1): 72-78

DOI

70
Rasouli M, Kencana A P, Van A H, Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceeding of IEEE Conference on Robotics Automation and Mechatronics, Singapore,2010, 68-71

71
Kim H M, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy, 2010, 72(2): 381-387

DOI PMID

72
Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy, 2008, 67(7): 1153-1158

DOI PMID

73
Bradley P D. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. In: Proceeding of IEEE Biomedical Circuits and Systems Conference,2006, 158-161

74
Chen X, Zhang X, Zhang L, Li X, Qi N, Jiang H, Wang Z. A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(1): 11-22

DOI

75
Chi B, Yao J, Han S, Xie X, Li G, Wang Z. A 2.4 GHz low power wireless transceiver analog front-end for endoscopy capsule system. Analog Integrated Circuits and Signal Processing, 2007, 51(2): 59-71

DOI

76
Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology, 2008, 14(26): 4142-4145

DOI PMID

77
Guanying M, Guozheng Y, Xiu H. Power transmission for gastrointestinal microsystems using inductive coupling. Physiological Measurement, 2007, 28(3): N9-N18

DOI PMID

78
Lenaerts B, Puers R. Omnidirectional Inductive Powering for Biomedical implants. Springer Netherlands,2009

79
Fischer D, Schreiber R, Levi D, Eliakim R. Capsule endoscopy: the localization system. Gastrointestinal Endoscopy Clinics of North America, 2004, 14(1): 25-31

DOI PMID

80
Hu C, Meng M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems,2005

Outlines

/