Frontiers of Mechanical Engineering >
Digital microfluidics: A promising technique for biochemical applications
Received date: 29 Dec 2016
Accepted date: 13 Apr 2017
Published date: 31 Oct 2017
Copyright
Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.
He WANG , Liguo CHEN , Lining SUN . Digital microfluidics: A promising technique for biochemical applications[J]. Frontiers of Mechanical Engineering, 2017 , 12(4) : 510 -525 . DOI: 10.1007/s11465-017-0460-z
1 |
Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 1979, 26(12): 1880–1886
|
2 |
Reyes D R, Iossifidis D, Auroux P A,
|
3 |
Mugele F, Baret J C. Electrowetting: From basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
|
4 |
Pollack M G, Shenderov A D, Fair R B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2002, 2(2): 96–101
|
5 |
Washizu M. Electrostatic actuation of liquid droplets for microreactor applications. IEEE Transactions on Industry Applications, 1998, 34(4): 732–737
|
6 |
Cho S K, Fan S K, Moon H,
|
7 |
Cho S K, Moon H, Kim C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003, 12(1): 70–80
|
8 |
Berthier J. Microdrops and Digital Microfluidics. Norwich: William Andrew Inc., 2008
|
9 |
Wang W, Jones T B. Moving droplets between closed and open microfluidic systems. Lab on a Chip, 2015, 15(10): 2201–2212
|
10 |
Wheeler A R. Putting electrowetting to work. Science, 2008, 322(5901): 539–540
|
11 |
Hsieh T H, Fan S K. Dielectric droplet manipulations by electropolarization forces. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems. Piskataway: IEEE, 2008, 641–644
|
12 |
Jones T B, Wang K L, Yao D J. Frequency-dependent electromechanics of aqueous liquids: Electrowetting and dielectrophoresis. Langmuir, 2004, 20(7): 2813–2818
|
13 |
Mugele F, Baret J C. Electrowetting: From basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
|
14 |
Gupta R, Sheth D M, Boone T K,
|
15 |
Chen L Q, Bonaccurso E. Electrowetting—From statics to dynamics. Advances in Colloid and Interface Science, 2014, 210: 2–12
|
16 |
Kang K H. How electrostatic fields change contact angle in electrowetting. Langmuir, 2002, 18(26): 10318–10322
|
17 |
Peykov V, Quinn A, Ralston J. Electrowetting: A model for contact-angle saturation. Colloid & Polymer Science, 2000, 278(8): 789–793
|
18 |
Darhuber A A, Chen J Z, Davis J M,
|
19 |
Darhuber A A, Valentino J P, Troian S M. Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab on a Chip, 2010, 10(8): 1061–1071
|
20 |
Heron S R, Wilson R, Shaffer S A,
|
21 |
Jin H, Zhou J, He X,
|
22 |
Pang H, Fu Y, Garcia-Gancedo L,
|
23 |
Shilton R J, Mattoli V, Travagliati M,
|
24 |
Seemann R, Brinkmann M, Pfohl T,
|
25 |
Gu H, Duits M H G, Mugele F. Droplets formation and merging in two-phase flow microfluidics. International Journal of Molecular Sciences, 2011, 12(12): 2572–2597
|
26 |
Renaudot R, Agache V, Daunay B,
|
27 |
Renaudot R, Daunay B, Kumemura M,
|
28 |
Timonen J V I, Latikka M, Leibler L,
|
29 |
Ng A H C, Choi K, Luoma R P,
|
30 |
Witters D, Knez K, Ceyssens F,
|
31 |
Shi D, Bi Q, He Y,
|
32 |
Choi K, Ng A H C, Fobel R,
|
33 |
Kumar A, Williams S J, Chuang H S,
|
34 |
Takinoue M, Takeuchi S. Droplet microfluidics for the study of artificial cells. Analytical and Bioanalytical Chemistry, 2011, 400(6): 1705–1716
|
35 |
Vergauwe N, Witters D, Atalay Y T,
|
36 |
Yaddessalage J B. Study of the capabilities of electrowetting on dielectric digital microfluidics (EWOD DMF) towards the high efficient thin-film evaporative cooling platform. Dissertation for the Doctoral Degree. Arlington: The University of Texas at Arlington, 2013
|
37 |
Elvira K S, Leatherbarrow R, Edel J,
|
38 |
Yafia M, Najjaran H. High precision control of gap height for enhancing principal digital microfluidics operations. Sensors and Actuators B: Chemical, 2013, 186: 343–352
|
39 |
Chang J H, Pak J J. Twin-plate electrowetting for efficient digital microfluidics. Sensors and Actuators B: Chemical, 2011, 160(1): 1581–1585
|
40 |
Cui W, Zhang M, Zhang D,
|
41 |
Ko H, Lee J, Kim Y,
|
42 |
Fobel R, Kirby A E, Ng A H C,
|
43 |
Fobel R, Kirby A E, Wheeler A R. Paper microfluidics goes digital. In: Proceedings of 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS. Freiburg: Chemical and Biological Microsystems Society, 2013, 708–710
|
44 |
Dixon C, Kirby A E, Fobel R,
|
45 |
Dixon C, Ng A H C, Fobel R,
|
46 |
Yafia M, Shukla S, Najjaran H. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing. Journal of Micromechanics and Microengineering, 2015, 25(5): 057001
|
47 |
Taniguchi T, Torii T, Higuchi T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab on a Chip, 2002, 2(1): 19–23
|
48 |
Ito T, Torii T, Higuchi T. Electrostatic micromanipulation of bubbles for microreactor applications. In: Proceedings of IEEE the Sixteenth Annual International Conference on Micro Electro Mechanical System. Kyoto: IEEE, 2003, 335–338
|
49 |
Sista R S, Eckhardt A E, Wang T,
|
50 |
Boles D J, Benton J L, Siew G J,
|
51 |
Choi K, Boyacı E, Kim J,
|
52 |
Keng P Y, Chen S, Ding H J,
|
53 |
Dooraghi A A, Keng P Y, Chen S,
|
54 |
Witters D, Vergauwe N, Ameloot R,
|
55 |
Shamsi M H, Choi K, Ng A H C,
|
56 |
Ng A H C, Lee M, Choi K,
|
57 |
Miller E M, Ng A H C, Uddayasankar U,
|
58 |
Sista R S, Eckhardt A E, Srinivasan V,
|
59 |
Fair R B. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 2007, 3(3): 245–281
|
60 |
Yoon J Y, Garrell R L. Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Analytical Chemistry, 2003, 75(19): 5097–5102
|
61 |
Shah G J, Kim C J. Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics. Journal of Microelectromechanical Systems, 2009, 18(2): 363–375
|
62 |
Barbulovic-Nad I, Au S H, Wheeler A R. A microfluidic platform for complete mammalian cell culture. Lab on a Chip, 2010, 10(12): 1536–1542
|
63 |
Choi K, Ng A H C, Fobel R,
|
64 |
Huang C Y, Tsai P Y, Lee I C,
|
65 |
Au S H, Shih S C C, Wheeler A R. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomedical Microdevices, 2011, 13(1): 41–50
|
66 |
Shih S C C, Gach P C, Sustarich J,
|
67 |
Eydelnant I A, Uddayasankar U, Li B,
|
68 |
Bogojevic D, Chamberlain M D, Barbulovic-Nad I,
|
69 |
Fiddes L K, Luk V N, Au S H,
|
70 |
George S M, Moon H. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels. Biomicrofluidics, 2015, 9(2): 024116
|
71 |
Au S H, Chamberlain M D, Mahesh S,
|
72 |
Nejad H R, Chowdhury O Z, Buat M D,
|
73 |
Valley J K, Ningpei S, Jamshidi A,
|
74 |
Kumar P T, Toffalini F, Witters D,
|
75 |
Schell W A, Benton J L, Smith P B,
|
76 |
Hung P Y, Jiang P S, Lee E F,
|
77 |
Yehezkel T B, Rival A, Raz O,
|
78 |
Welch E R F, Lin Y Y, Madison A,
|
79 |
Kim H, Bartsch M S, Renzi R F,
|
80 |
Kim H, Jebrail M J, Sinha A,
|
81 |
Wheeler A R, Moon H, Bird C A,
|
82 |
Wheeler A R, Moon H, Kim C J,
|
83 |
Luk V N, Fiddes L K, Luk V M,
|
84 |
Aijian A P, Chatterjee D, Garrell R L. Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis. Lab on a Chip, 2012, 12(14): 2552–2559
|
/
〈 | 〉 |