REVIEW ARTICLE

Efficient utilization of wind power: Long-distance transmission or local consumption?

  • Yuanzhang SUN 1 ,
  • Xiyuan MA 2 ,
  • Jian XU , 1 ,
  • Yi BAO 1 ,
  • Siyang LIAO 1
Expand
  • 1. School of Electrical Engineering, Wuhan University, Wuhan 430072, China
  • 2. China Southern Power Grid Research Institute, Guangzhou 510080, China

Received date: 28 Aug 2016

Accepted date: 24 Jan 2017

Published date: 04 Aug 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Excess wind power produced in wind-intensive areas is normally delivered to remote load centers via long-distance transmission lines. This paper presents a comparison between long-distance transmission, which has gained popularity, and local energy consumption, in which a fraction of the generated wind power can be locally consumed by energy-intensive industries. First, the challenges and solutions to the long-distance transmission and local consumption of wind power are presented. Then, the two approaches to the utilization of wind power are compared in terms of system security, reliability, cost, and capability to utilize wind energy. Finally, the economic feasibility and technical feasibility of the local consumption of wind power are demonstrated by a large and isolated industrial power system, or supermicrogrid, in China. The coal-fired generators together with the short-term interruptible electrolytic aluminum load in the supermicrogrid are able to compensate for the intermittency of wind power. In the long term, the transfer of high-energy-consumption industries to wind-rich areas and their local consumption of the available wind power are beneficial.

Cite this article

Yuanzhang SUN , Xiyuan MA , Jian XU , Yi BAO , Siyang LIAO . Efficient utilization of wind power: Long-distance transmission or local consumption?[J]. Frontiers of Mechanical Engineering, 0 , 12(3) : 440 -455 . DOI: 10.1007/s11465-017-0440-3

Acknowledgements

This work was supported in part by the Ministry of Science and Technology of China (Grant No. 2016YFB0900105) and the National Natural Science Foundation of China (Grant Nos. 51190105 and 51477122).
1
Hart E H, Stoutenburg E D, Jacobson M Z. The potential of intermittent renewables to meet electric power demand: Current methods and emerging analytical techniques. Proceedings of the IEEE, 2012, 100(2): 322–334 

DOI

2
Erlich I, Shewarega F, Feltes C,  Offshore wind power generation technologies. Proceedings of the IEEE, 2013, 101(4): 891–905

DOI

3
GWEC. Global Wind Report 2015—Annual market update. 2016. Retrieved from http://www.gwec.net/wp-content/uploads/vip/GWEC-Global-Wind-2015-Report_April-2016_22_04.pdf

4
Hatziargyriou N, Zervos A. Wind power development in Europe. Proceedings of the IEEE, 2001, 89(12): 1765–1782

DOI

5
Paulus M, Borggrefe F. The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Applied Energy, 2011, 88(2): 432–441

DOI

6
Ackermann T, Abbad J R, Dudurych I M,  European balancing act. IEEE Power & Energy Magazine, 2007, 5(6): 90–103

DOI

7
Farahmand H, Aigner T, Doorman G L,  Balancing market integration in the Northern European continent: A 2030 case study. In: Proceedings of IEEE Power and Energy Society General Meeting. IEEE, 2013

DOI

8
Hammons T J, Lescale V F, Uecker K,  State of the art in ultrahigh-voltage transmission. Proceedings of the IEEE, 2012, 100(2): 360–390

DOI

9
BP. BP Statistical Review of World Energy 2016. Retrieved from bp.com/statisticalreview

10
Piwko R, Osborn D, Gramlich R,  Wind energy delivery issues [transmission planning and competitive electricity market operation]. IEEE Power & Energy Magazine, 2005, 3(6): 47–56 

DOI

11
Swisher R, De Azua C R, Clendenin J. Strong winds on the horizon: Wind power comes of age. Proceedings of the IEEE, 2001, 89(12): 1757–1764

DOI

12
Aparicio N, MacGill I, Rivier Abbad J,  Comparison of wind energy support policy and electricity market design in Europe, the United States, and Australia. IEEE Transactions on Sustainable Energy, 2012, 3(4): 809–818

DOI

13
U.S. Energy Information Administration. Electricity Data. Retrieved from http://www.eia.gov/electricity/data.cfm#generation

14
National Energy Administration of China. The Utilization Hours of Many Generating Sets is Decreasing in 2015. 2016 (in Chinese)

15
Purvins A, Zubaryeva A, Llorente M,  Challenges and options for a large wind power uptake by the European electricity system. Applied Energy, 2011, 88(5): 1461–1469

DOI

16
Giebel G. A variance analysis of the capacity displaced by wind energy in Europe. Wind Energy (Chichester, England), 2007, 10(1): 69–79

DOI

17
Østergaard P A. Geographic aggregation and wind power output variance in Denmark. Energy, 2008, 33(9): 1453–1460

DOI

18
Aigner T, Jaehnert S, Doorman G L,  The effect of large-scale wind power on system balancing in Northern Europe. IEEE Transactions on Sustainable Energy, 2012, 3(4): 751–759 

DOI

19
Ma X, Sun Y, Fang H,  Scenario-based multiobjective decision-making of optimal access point for wind power transmission corridor in the load centers. IEEE Transactions on Sustainable Energy, 2013, 4(1): 229–239

DOI

20
State Electricity Regulatory Commission of China. Supervision Report of Wind Power Utilization in Key Areas. 2012 (in Chinese)

21
Rebours Y, Kirschen D. A Survey of Definitions and Specifications of Reserve Services. University of Manchester Report. 2005

22
Ahmadi-Khatir A, Conejo A J, Cherkaoui R. Multi-area energy and reserve dispatch under wind uncertainty and equipment failures. IEEE Transactions on Power Systems, 2013, 28(4): 4373–4383

DOI

23
Huang D, Shu Y, Ruan J,  Ultra high voltage transmission in China: Developments, current status and future prospects. Proceedings of the IEEE, 2009, 97(3): 555–583

DOI

24
National Development and Reform Commission. 12th Five-Year-Plan of Renewable Energy Development. 2012 (in Chinese)

25
Heydt G T, Ayyanar R, Hedman K W,  Electric power and energy engineering: The first century. Proceedings of the IEEE, 2012, 100(Special Centennial Issue): 1315–1328

DOI

26
Haileselassie T M, Uhlen K. Power system security in a meshed North Sea HVDC grid. Proceedings of the IEEE, 2013, 101(4): 978–990

DOI

27
Egea-Alvarez A, Bianchi F, Junyent-Ferre A,  Voltage control of multiterminal VSC-HVDC transmission systems for offshore wind power plants: Design and implementation in a scaled platform. IEEE Transactions on Industrial Electronics, 2013, 60(6): 2381–2391

DOI

28
Liang J, Jing T, Gomis-Bellmunt O,  Operation and control of multiterminal HVDC transmission for offshore wind farms. IEEE Transactions on Power Delivery, 2011, 26(4): 2596–2604

DOI

29
Abdel-Khalik A S, Massoud A M, Elserougi A A,  Optimum power transmission-based droop control design for multi-terminal HVDC of offshore wind farms. IEEE Transactions on Power Systems, 2013, 28(3): 3401–3409

DOI

30
Kabouris J, Kanellos F D. Impacts of large-scale wind penetration on designing and operation of electric power systems. IEEE Transactions on Sustainable Energy, 2010, 1(2): 107–114

DOI

31
Xie L, Carvalho P M S, Ferreira L A F M,  Wind integration in power systems: Operational challenges and possible solutions. Proceedings of the IEEE, 2011, 99(1): 214–232

DOI

32
Ma X, Sun Y, Fang H. Scenario generation of wind power based on statistical uncertainty and variability. IEEE Transactions on Sustainable Energy, 2013, 4(4): 894–904

DOI

33
Piwko R, Meibom P, Holttinen H,  Penetrating insights: Lessons learned from large-scale wind power integration. IEEE Power and Energy Magazine, 2012, 10(2): 44–52

DOI

34
Navid N, Rosenwald G. Market solutions for managing ramp flexibility with high penetration of renewable resource. IEEE Transactions on Sustainable Energy, 2012, 3(4): 784–790

DOI

35
RWE. The Need for Smart Megawatts Power Generation in Europe—Facts & Trends. 2009

36
Lannoye E, Flynn D, O’Malley M. Evaluation of power system flexibility. IEEE Transactions on Power Systems, 2012, 27(2): 922–931

DOI

37
Hossain M J, Pota H R, Mahmud M A,  Investigation of the impacts of large-scale wind power penetration on the angle and voltage stability of power systems. IEEE Systems Journal, 2012, 6(1): 76–84

DOI

38
Chompoo-inwai C, Lee W J, FuangfooP,  System impact study for the interconnection of wind generation and utility system. IEEE Transactions on Industry Applications, 2005, 41(1): 163–168

DOI

39
Slootweg J G, Kling W L. The impact of large scale wind power generation on power system oscillations. Electric Power Systems Research, 2003, 67(1): 9–20

DOI

40
Domínguez-García J L, Gomis-Bellmunt O, Bianchi F D,  Power oscillation damping supported by wind power: A review. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4994–5006

DOI

41
Tsourakis G, Nomikos B M, Vournas C D. Contribution of doubly fed wind generators to oscillation damping. IEEE Transactions on Energy Conversion, 2009, 24(3): 783–791

DOI

42
Gu Y, McCalley J D, Ni M. Coordinating large-scale wind integration and transmission planning. IEEE Transactions on Sustainable Energy, 2012, 3(4): 652–659

DOI

43
Yu H, Chung C Y, Wong K P,  A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties. IEEE Transactions on Power Systems, 2009, 24(3): 1568–1576

DOI

44
Muñoz C, Sauma E, Contreras J,  Impact of high wind power penetration on transmission network expansion planning. IET Generation,  Transmission  &  Distribution,  2012, 6(12): 1281–1291

DOI

45
Manjure D P, Mishra Y, Brahma S,  Impact of wind power development on transmission planning at midwest ISO. IEEE Transactions on Sustainable Energy, 2012, 3(4): 845–852

DOI

46
Salazar H, Liu C C, Chu R F. Decision analysis of merchant transmission investment by perpetual options theory. IEEE Transactions on Power Systems, 2007, 22(3): 1194–1201

DOI

47
Ni M, Yang Z. By leaps and bounds: Lessons learned from renewable energy growth in China. IEEE Power and Energy Magazine, 2012, 10(2): 37–43

DOI

48
Giebel G, Brownsword R, Kariniotakis G,  The State-of-the-Art in Short-Term Prediction of Wind Power: A Literature Overview, 2nd Edition. Risø National Laboratory, Technical Report. 2011

49
Monteiro R B C, Miranda V, Botterud A,  Wind Power Forecasting: State of the Art 2009. Argonne National Laboratory, Technical Report. 2009

50
Tastu J, Pinson P, Trombe P J,  Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Transactions on Smart Grid, 2014, 5(1): 480–489

DOI

51
Yang M, Fan S, Lee W J. Probabilistic short-term wind power forecast using componential sparse Bayesian learning. IEEE Transactions on Industry Applications, 2013, 49(6): 2783–2792

DOI

52
Pinson P. Estimation of the uncertainty in wind power forecasting. Dissertation for the Doctoral Degree. Paris: Ecole des Mines de Paris, 2006

53
Wang J, Shahidehpour M, Li Z. Security-constrained unit commitment with volatile wind power generation. IEEE Transactions on Power Systems, 2008, 23(3): 1319–1327

DOI

54
Tuohy A, Meibom P, Denny E,  Unit commitment for systems with significant wind penetration. IEEE Transactions on Power Systems, 2009, 24(2): 592–601

DOI

55
Pinson P, Madsen H, Nielsen H A,  From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy (Chichester, England), 2009, 12(1): 51–62

DOI

56
Jiang R, Wang J, Guan Y. Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 2012, 27(2): 800–810

DOI

57
Zhao C, Guan Y. Unified stochastic and robust unit commitment. IEEE Transactions on Power Systems, 2013, 28(3): 3353–3361

DOI

58
Zhang N, Kang C, Kirschen D S,  Planning pumped storage capacity for wind power integration. IEEE Transactions on Sustainable Energy, 2013, 4(2): 393–401

DOI

59
Sahin C, Shahidehpour M, Erkmen I. Allocation of hourly reserve versus demand response for security-constrained scheduling of stochastic wind energy. IEEE Transactions on Sustainable Energy, 2013, 4(1): 219–228

DOI

60
Botterud A, Zhou Z, Wang J,  Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: A case study of Illinois. IEEE Transactions on Sustainable Energy, 2013, 4(1): 250–261

DOI

61
De Jonghe C, Hobbs B F, Belmans R. Optimal generation mix with short-term demand response and wind penetration. IEEE Transactions on Power Systems, 2012, 27(2): 830–839

DOI

62
Lin W, Wen J, Liang J,  A three-terminal HVDC system to bundle wind farms with conventional power plants. IEEE Transactions on Power Systems, 2013, 28(3): 2292–2300

DOI

63
Taggart S, James G, Dong Z,  The future of renewables linked by a transnational Asian grid. Proceedings of the IEEE, 2012, 100(2): 348–359

DOI

64
Ding Z, Guo Y, Wu D,  A market based scheme to integrate distributed wind energy. IEEE Transactions on Smart Grid, 2013, 4(2): 976–984

DOI

65
Hammons T J. Integrating renewable energy sources into European grids. International Journal of Electrical Power & Energy Systems, 2008, 30(8): 462–475

DOI

66
Obara S, Morizane Y, Morel J. A study of small-scale energy networks of the Japanese Syowa base in Antarctica by distributed engine generators. Applied Energy, 2013, 111: 113–128

DOI

67
Lasseter R H. Smart distribution: Coupled microgrids. Proceedings of the IEEE, 2011, 99(6): 1074–1082

DOI

68
Nikkhajoei H, Lasseter R H. Distributed generation interface to the CERTS microgrid. IEEE Transactions on Power Delivery, 2009, 24(3): 1598–1608

DOI

69
Li J, Ma X, Liu C C,  Distribution system restoration with microgrids using spanning tree search. IEEE Transactions on Power Systems, 2014, 29(6): 3021–3029

DOI

70
Bao I S, KimJ O. Reliability evaluation of customers in a microgrid. IEEE Transactions on Power Systems, 2008, 23(3): 1416–1422

DOI

71
Zhao B, Zhang X, Chen J,  Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE Transactions on Sustainable Energy, 2013, 4(4): 934–943

DOI

72
Chang C A, Wu Y K, Chen W T,  A novel power system defense plan to cope with 30% wind power penetration in the isolated Penghu system. IEEE Transactions on Industry Applications, 2013, 49(4): 1669–1677

DOI

73
Hatziargyriou N, Asano H, Iravani R,  Microgrids. IEEE Power and Energy Magazine, 2007, 5(4): 78–94

DOI

74
Marrero G A, Ramos-Real F J. Electricity generation cost in isolated system: The complementarities of natural gas and renewables in the Canary Islands. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2808–2818

DOI

75
Rehman S, Mahbub Alam M, Meyer J P,  Feasibility study of a wind-PV-diesel hybrid power system for a village. Renewable Energy, 2012, 38(1): 258–268

DOI

76
Kaldellis J, Kapsali M, Kavadias K. Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks. Applied Energy, 2010, 87(8): 2427–2437

DOI

77
Sun Y, Lin J, Song Y,  An industrial system powered by wind and coal for aluminum production: A case study of technical demonstration and economic feasibility. Energies, 2012, 5(12): 4844–4869

DOI

78
Lin J, Sun Y, Song Y,  Wind power fluctuation smoothing controller based on risk assessment of grid frequency deviation in an isolated system. IEEE Transactions on Sustainable Energy, 2013, 4(2): 379–392

DOI

79
Xu J, Liao S, Sun Y,  An isolated industrial power system driven by wind-coal power for aluminum productions: A case study of frequency control using voltage adjusting. IEEE Transactions on Power Systems, 2015, 30(1): 471–483

DOI

80
Jiang H, Lin J, Song Y,  Demand side frequency control scheme in an isolated wind power system for industrial aluminum smelting production. IEEE Transactions on Power Systems, 2014, 29(2): 844–853

DOI

81
Liao S Y, Xu J, Sun Y,  Load-damping characteristic control method in an isolated power system with industrial voltage-sensitive load. IEEE Transactions on Power Systems, 2015, 2015(31): 1118–1128

82
Cui T, Lin W, Sun Y,  Excitation voltage control for emergency frequency regulation of island power system with voltage-dependent loads. IEEE Transactions on Power Systems, 2016, 31(2): 1204–1217

DOI

83
Jiang H, Lin J, Song Y,  MPC-based frequency control with demand-side participation: A case study in an isolated wind-aluminum power system. IEEE Transactions on Power Systems, 2015, 30(6): 3327–3337

DOI

84
Sun Y, Liao S, Xu J,  Industrial implementation of a wide area measurement system based control scheme in an isolated power system driven by wind-coal power for aluminum productions. IET Generation, Transactions and Distribution, 2016, 10(8): 1877–1882

DOI

85
Bao Y, Xu J, Sun Y,  An industrial verification of frequency regulation by electrolytic aluminum in an isolated power system. In: Proceedings of Power and Energy Society General Meeting. IEEE, 2016, 1–5 

DOI

86
Bridges J E. Wind power energy storage for in situ shale oil recovery with minimal CO2 emissions. IEEE Transactions on Energy Conversion, 2007, 22(1): 103–109

DOI

87
Mozina C J. Wind-power generation: Impact of wind generators on distribution systems. IEEE Industry Applications Magazine, 2011, 17(3): 37–43 

DOI

88
Lopes J P, Moreira C, Madureira A. Defining control strategies for microgrids islanded operation. IEEE Transactions on Power Systems, 2006, 21(2): 916–924

DOI

89
Siddiqui A S, Marnay C. Distributed generation investment by a microgrid under uncertainty. Energy, 2008, 33(12): 1729–1737

DOI

90
Chen S X, Gooi H B, Wang M Q. Sizing of energy storage for microgrids. IEEE Transactions on Smart Grid, 2012, 3(1): 142–151

DOI

91
Zhou W, Lou C, Li Z,  Current status of research on optimum sizing of stand-alone hybrid solar—Wind power generation systems. Applied Energy, 2010, 87(2): 380–389

DOI

92
Luo C, Ooi B T. Frequency deviation of thermal power plants due to wind farms. IEEE Transactions on Energy Conversion, 2006, 21(3): 708–716

DOI

93
Lew D, Brinkman G, Kumar N,  Impacts of wind and solar on emissions and wear and tear of fossil-fueled generators. In: Proceedings of 2012 IEEE Power and Energy Society General Meeting, 2012, 1–8

DOI

94
Cardenas R, Pena R, Alepuz S,  Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2776–2798

DOI

95
Ma H, Chowdhury B. Working towards frequency regulation with wind plants: Combined control approaches. IET Generation, Transactions and Distribution, 2010, 4(4): 308–316

DOI

96
Chang-Chien L R, Lin W T, Yin Y C. Enhancing frequency response control by DFIGs in the high wind penetrated power systems. IEEE Transactions on Power Systems, 2011, 26(2): 710–718

DOI

97
Zhang Z, Sun Y, Lin J,  Coordinated frequency regulation by doubly fed induction generator-based wind power plants. IET Generation, Transactions and Distribution, 2012, 6(1): 38–47

DOI

98
Babu C A, Ashok S. Peak Load Management in Electrolytic Process Industries. IEEE Transactions on Power Systems, 2008, 23(2): 399–405

DOI

99
State Power Investment Corporation.Feasibility Study on the Demonstration Project of Circular Economy in East Inner Mongolia. 2010 (in Chinese)

100
National Development and Reform Commission. Notice on price policy improvement for onshore wind power. 2009. Retrieved from http://zfxxgk.ndrc.gov.cn/PublicItemView.aspx?ItemID={bef52635-547c-490f-8334-7fdbdb5d057a} (in Chinese)

101
Ministry of Industry and Information of China. 12th Five-Year-Plan of Nonferrous Metals. 2011 (in Chinese)

102
Information Website on China’s Industry. The 2015 statistics on provincial yield of electrolytic aluminum in China. 2015. Retrieved from http://www.chyxx.com/data/201511/356162.html (in Chinese)

103
Electrolytic Aluminum Industry. Why the production capacity is excess, while there are newly built projects? 2013. Retrieved from http://finance.people.com.cn/n/2013/0520/c1004-21536244.html(in Chinese)

Outlines

/