REVIEW ARTICLE

Similitude design for the vibration problems of plates and shells: A review

  • Yunpeng ZHU 1 ,
  • You WANG 2 ,
  • Zhong LUO , 2 ,
  • Qingkai HAN 3 ,
  • Deyou WANG 4
Expand
  • 1. Department of Automatic Control and System Engineering, Sheffield University, Sheffield S13JD, UK
  • 2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • 3. School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China
  • 4. AECC Shenyang Aero-engine Institute, Shenyang 110042, China

Received date: 18 Sep 2016

Accepted date: 12 Nov 2016

Published date: 19 Jun 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

Cite this article

Yunpeng ZHU , You WANG , Zhong LUO , Qingkai HAN , Deyou WANG . Similitude design for the vibration problems of plates and shells: A review[J]. Frontiers of Mechanical Engineering, 2017 , 12(2) : 253 -264 . DOI: 10.1007/s11465-017-0418-1

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 11572082), the Excellent Talents Support Program in Institutions of Higher Learning in Liaoning Province of China (Grant No. LJQ2015038), the Fundamental Research Funds for the Central Universities of China (Grant Nos. N150304004 and N140301001), and the Key Laboratory for Precision & Non-traditional Machining of Ministry of Education, Dalian University of Technology (Grant No. JMTZ201602).

Conflict of Interest

The authors declare no conflict of interest, including specific financial interests and relationships relevant to the subject of this paper.
1
Harris H G, Sabnis G. Structural Modeling and Experimental Techniques. Boca Raton: CRC Press, 1999

2
Ramu M, Prabhu R V, Thyla P R. Development of structural similitude and scaling laws for elastic models. Thematic Orientation of the Journal Manufacturing Engineering, 2011, 67–69

3
Simitses G J, Starnes Jr J H, Rezaeepazhand J. Structural similitude and scaling laws for plates and shells: A review. In: Durban D, Givoli D, Simmonds J G, eds. Advances in the Mechanics of Plates and Shells. Springer Netherlands, 2001, 295–310

4
Bažant Z P. Size effect on structural strength: A review. Archive of Applied Mechanics, 1999, 69(9 – 10): 703–725

DOI

5
Bažant Z P. Size effect. International Journal of Solids and Structures, 2000, 37(1 – 2): 69–80

DOI

6
Galilei G, Weston J. Mathematical Discourses Concerning Two New Sciences Relating to Mechanicks and Local Motion : In Four Dialogues. Printed for John Hooke, at the Flower-de-Luce Against St. Dunstan’s Church in Fleet-Street. London, 1730

7
Buckingham E. On physically similar systems, illustrations of the use of dimensional equations. Physical Review, 1914, 4(4): 345–376

DOI

8
Dieterich J S. Scale Models in Engineering Fundamental and Applications. Oxford: Pergamon Press, 1977

9
Birkhoff G. Mathematics for engineers—III: Dimensional analysis of partial differential equations. Electrical Engineering, 1948, 67(12): 1185–1188

DOI

10
Langhaar H L. Dimensional Analysis and Theory of Models. New York: John Wiley & Sons, Inc., 1951

11
Buckingham E. The principle of similitude. Nature, 1915, 96: 396–397

12
Goodier J N. Dimensional Analysis. New York: John Wiley & Sons, Inc., 1950, 1035–1045

13
Wissmann J W. Dynamic Stability of Space Vehicles Structural Dynamics Model Testing. National Aeronautics and Space Administration Technical Report NASA CR-1195. 1968

14
Macagno E O. Historico-critical review of dimensional analysis. Journal of the Franklin Institute, 1971, 292(6): 391–402

DOI

15
Szues E. Similitude and Modeling. Elsevier, 2012

16
David F W, Butterworths N H. Experimental Modeling in Engineering. Elsevier, 2013

17
Wissmann J W. Dynamic Stability of Space Vehicles Structural Dynamics Model Testing. National Aeronautics and Space Administration Technical Report NASA CR-1195. 1968

18
Krayterman B, Sabnis G M. Similitude theory: Plates and shells analysis. Journal of Engineering Mechanics, 1984, 110(9): 1247–1263

DOI

19
Torkamani S, Jafari A A, Navazi H M. Scaled down models for free vibration analysis of orthogonally stiffened cylindrical shells using similitude theory. In: Proceedings of 26th Congress of International Council of the Aeronautical Sciences. 2008

20
Torkamani S, Navazi H M, Jafari A A, Structural similitude in free vibration of orthogonally stiffened cylindrical shells. Thin-walled Structures, 2009, 47(11): 1316–1330

DOI

21
Ramu M, Prabhu Raja V, Thyla P R. Establishment of structural similitude for elastic models and validation of scaling laws. KSCE Journal of Civil Engineering, 2013, 17(1): 139–144

DOI

22
Kline S J. Similitude and Approximation Theory. New York: McGraW-Hill, 1965

23
Szücs E. Fundamental Studies in Engineering (II), Similitude and Modeling. Amsterdam: Elsevier, 1980, 138

24
Wu J J. Dynamic analysis of a rectangular plate under a moving line load using scale-beams and scaling laws. Composite Structures, 2005, 83(19 – 20): 1646–1658

DOI

25
Morton J. Scaling of impact loaded carbon-fibre composites. AIAA Journal, 1988, 26(8): 989–994

DOI

26
Simitses G J, Rezaeepazhand J. Structural Similitude and Scaling Laws for Laminated Beam-plates. NASA Technical Report NASA-CR-190585. 1992

27
Kure K. Model tests with ocean structures. Applied Ocean Research, 1981, 3(4): 171–176

DOI

28
Adrezin R, Bar-Avi P, Benaroya H. Dynamic response of compliant offshore structures—Review. Journal of Aerospace Engineering, 1996, 9(4): 114–131

DOI

29
Vassalos D. Physical modelling and similitude of marine structures. Ocean Engineering, 1998, 26(2): 111–123

DOI

30
Winsor F. Evaluation of methods to remove inertial force from measured model wave impact force signals. Ocean Engineering, 2003, 30(1): 47–84

DOI

31
Asgarian B, Mohebbinejad A, Soltani R H. Simplified method to assess dynamic response of jacket type offshore platforms subjected to wave loading. In: Proceedings of ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, 2004, 685–692

32
Ou J, Long X, Li Q, Vibration control of steel jacket offshore platform structures with damping isolation systems. Engineering Structures, 2007, 29(7): 1525–1538

DOI

33
Elshafey A A, Haddara M R, Marzouk H. Dynamic response of offshore jacket structures under random loads. Marine Structures, 2009, 22(3): 504–521

DOI

34
Sutherland L S, Guedes Soares C. Scaling of impact on low fibre-volume glass-polyester laminates. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 307–317

DOI

35
Bachynski E E, Motley M R, Young Y L. Dynamic hydroelastic scaling of the underwater shock response of composite marine structures. Journal of Applied Mechanics, 2012, 79(1): 014501–0145 07

DOI

36
Aguiar de Souza V, Kirkayak L, Suzuki K, Experimental and numerical analysis of container stack dynamics using a scaled model test. Ocean Engineering, 2012, 39: 24–42

DOI

37
Wang S, Yang D, Liu N. Investigation of acoustic scale effects and boundary effects for the similitude model of underwater complex shell-structure. Journal of Marine Science and Application, 2007, 6(1): 31–35

DOI

38
Sato J A, Vecchio F J, Andre H M. Scale-model testing of reinforced concrete under impact loading conditions. Canadian Journal of Civil Engineering, 1989, 16(4): 459–466

DOI

39
Kim N S, Lee J H, Chang S P. Equivalent multi-phase similitude law for pseudo-dynamic test on small scale reinforced concrete models. Engineering Structures, 2009, 31(4): 834–846

DOI

40
Pototzky A S. Scaling laws applied to a modal formulation of the aero servo elastic equations. In: Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, 2002 1–11

DOI

41
Jordan T L, Hutchinson M A, Watkins V E, National Aeronautics and Space Administration Langley Research Center’s design criteria for small unmanned aerial vehicle development. 2007.

42
Hunt G K. Similarity Requirements for Aero-elastic Models of Helicopter Rotors. Aeronautical Research Council CP 1245. 1973

43
Ghee T A, Kelley H L. Exploratory Flow Visualization Investigation of Mast-mounted Sights in Presence of a Rotor. NASA Technical Report NASA-TM-4634. 1995

44
Wereley N M, Kamath G M. Bringing relevance to freshman aerospace engineering: Demonstration of a model scale Comanche helicopter lag mode damper. International Journal of Engineering Education, 1997, 13(5): 369–375

45
Singleton J D, Yeager W T. Important scaling parameters for testing model-scale helicopter rotors. Journal of Aircraft, 2000, 37(3): 396–402

DOI

46
Mixson J S, Catherine J J. Comparison of Experimental Vibration Characteristics Obtained from a 1/5-scale Model and from a Full-scale Saturn sa-1. NASA Technical Report NASA-TN-D-2215. 1964

47
Kunz P J. Aerodynamics and design for ultra-low Reynolds number flight. Dissertation for the Doctoral Degree. Palo Alto: Stanford University, 2003

48
Cagliostro D J, Florence A L, Abrahamson G R. Scale modelling in LMFBR safety. Nuclear Engineering and Design, 1979, 55(2): 235–247

DOI

49
Quercetti T, Müller K, Schubert S. Comparison of experimental results from drop testing of spent fuel package design using full scale prototype model and reduced scale model. Packaging, Transport, Storage & Security of Radioactive Material, 2008, 19(4): 197–202

DOI

50
Aquaro D, Zaccari N, Di Prinzio M, Numerical and experimental analysis of the impact of a nuclear spent fuel cask. Nuclear Engineering and Design, 2010, 240(4): 706–712

DOI

51
Torkamani S, Navazi H M, Jafari A A, et al. Structural similitude in free vibration of orthogonally stiffened cylindrical shells. Thin-walled Structures, 2009, 47(11): 1316–1330

DOI

52
Simitses G J. Buckling of moderately thick laminated cylindrical shells: A review. Composites Part B: Engineering, 1996, 27(6): 581–587

DOI

53
Rezaeepazhand J, Simitses G J. Use of scaled-down models for predicting vibration response of laminated plates. Composite Structures, 1995, 30(4): 419–426

DOI

54
Simitses G J. Structural similitude for flat laminated surfaces. Composite Structures, 2001, 51(2): 191–194

DOI

55
Simitses G J, Rezaeepazhand J. Structural similitude and scaling laws for buckling of cross-ply laminated plates. Journal of Thermoplastic Composite Materials, 1995, 8(3): 240–251

DOI

56
Singhatanadgid P, Ungbhakorn V. Scaling laws for vibration response of anti-symmetrically laminated plates. Structural Engineering and Mechanics, 2002, 14(3): 345–364

DOI

57
Ungbhakorn V, Singhatanadgid P. Similitude invariants and scaling laws for buckling experiments on anti-symmetrically laminated plates subjected to biaxial loading. Composite Structures, 2003, 59(4): 455–465

DOI

58
Rezaeepazhand J, Wisnom M R. Scaled models for predicting buckling of delaminated orthotropic beam-plates. Composite Structures, 2009, 90(1): 87–91

DOI

59
Rezaeepazhand J, Yazdi A A. Similitude requirements and scaling laws for flutter prediction of angle-ply composite plates. Composites Part B: Engineering, 2011, 42(1): 51–56

DOI

60
Yazdi A A, Rezaeepazhand J. Structural similitude for flutter of delaminated composite beam-plates. Composite Structures, 2011, 93(7): 1918–1922

DOI

61
Singhatanadgid P, Ungbhakorn V. Scaling laws for vibration response of anti-symmetrically laminated plates. Structural Engineering and Mechanics, 2002, 14(3): 345–364

DOI

62
Wu J J. The complete-similitude scale models for predicting the vibration characteristics of the elastically restrained flat plates subjected to dynamic loads. Journal of Sound and Vibration, 2003, 268(5): 1041–1053

DOI

63
Wu J J. Prediction of the dynamic characteristics of an elastically supported full-size flat plate from those of its complete-similitude scale model. Composite Structures, 2006, 84(3 – 4): 102–114

DOI

64
Frostig Y, Simitses G J. Similitude of sandwich panels with a ‘soft’ core in buckling. Composites Part B: Engineering, 2004, 35(6 – 8): 599–608

DOI

65
Shokrieh M M, Askari A. Similitude study of impacted composite laminates under buckling loading. Journal of Engineering Mechanics, 2013, 139(10): 1334–1340

DOI

66
Rezaeepazhand J, Simitses G J, Starnes J H Jr. Scale models for laminated cylindrical shells subjected to axial compression. Composite Structures, 1996, 34(4): 371–379

DOI

67
Rezaeepazhand J, Simitses G J. Design of scaled down models for predicting shell vibration response. Journal of Sound and Vibration, 1996, 195(2): 301–311

DOI

68
Rezaeepazhand J, Simitses G J. Structural similitude for vibration response of laminated cylindrical shells with double curvature. Composites Part B: Engineering, 1997, 28(3): 195–200

DOI

69
Ungbhakorn V, Singhatanadgid P. Similitude and physical modeling for buckling and vibration of symmetric cross-ply laminated circular cylindrical shells. Journal of Composite Materials, 2003, 37(19): 1697–1712

DOI

70
Ungbhakorn V, Wattanasakulpong N. Structural similitude and scaling laws of anti-symmetric cross-ply laminated cylindrical shells for buckling and vibration experiments. International Journal of Structural Stability and Dynamics, 2007, 07(04): 609–627

DOI

71
Chouchaoui C S, Ochoa O O. Similitude study for a laminated cylindrical tube under tension, torsion, bending, internal and external pressure. Part I: Governing equations. Composite Structures, 1999, 44(4): 221–229

DOI

72
Chouchaoui C S, Parks P, Ochoa O O. Similitude study for a laminated cylindrical tube under tension, torsion, bending, internal and external pressure. Part II: Scale models. Composite Structures, 1999, 44(4): 231–236

DOI

73
Derisi B, Hoa S, Hojjati M. Similitude study on bending stiffness and behavior of composite tubes. Journal of Composite Materials, 2012, 46(21): 2695–2710

DOI

74
Yazdi A A. Prediction flutter boundaries of laminated cylindrical shells using scaling laws. Journal of Aerospace Engineering, 2014, 27(1): 86–92

DOI

75
Qin G, Duan H, Luo Z, Similitude analysis on mechanical parameters of thin walled shells. Advanced Engineering Forum, 2011, 2–3: 936–941

76
Wen H M, Jones N. Experimental investigation of the scaling laws for metal plates struck by large masses. International Journal of Impact Engineering, 1993, 13(3): 485–505

DOI

77
Drazetic P, Ravalard Y, Dacheux F, Applying non-direct similitude technique to the dynamic bending collapse of rectangular section tubes. International Journal of Impact Engineering, 1994, 15(6): 797–814

DOI

78
Oshiro R E, Alves M. Scaling impacted structures. Archive of Applied Mechanics, 2004, 74(1 – 2): 130–145

DOI

79
Alves M, Oshiro R E. Scaling impacted structures when the prototype and the model are made of different materials. International Journal of Solids and Structures, 2006, 43(9): 2744–2760

DOI

80
Oshiro R E, Alves M. Scaling of cylindrical shells under axial impact. International Journal of Impact Engineering, 2007, 34(1): 89–103

DOI

81
Oshiro R E, Alves M. Predicting the behaviour of structures under impact loads using geometrically distorted scaled models. Journal of the Mechanics and Physics of Solids, 2012, 60(7): 1330–1349

DOI

82
Trimiño L F, Cronin D S. Non-direct similitude technique applied to the dynamic axial impact of bonded crush tubes. International Journal of Impact Engineering, 2014, 64: 39–52

DOI

83
Luo Z, Zhu Y, Zhao X, Determination method of dynamic distorted scaling laws and applicable structure size intervals of a rotating thin-wall short cylindrical shell. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(5): 806–817

DOI

84
Luo Z, Wang Y, Zhu Y, The dynamic similitude design method of thin walled structures and experimental validation. Shock and Vibration, 2016, 2016(2016): 1–11

DOI

85
Luo Z, Zhu Y, Chen X, Determination method of the structure size intervals of dynamic distorted model of elastic cantilever thin plate. Advances in Mechanical Engineering, 2014, 6(8): 203–212

DOI

86
Luo Z, Zhang K, Han Q, Similarity design method of test model of thin-walled short cylindrical shell with complex annular labyrinth. Journal of Mechanical Engineering, 2013, 49(21): 132–139 (in Chinese)

DOI

87
Luo Z, Zhu Y, Wang Y, Study of the structure size interval of incomplete geometrically similitude model of the elastic thin plates. Journal of Measurements in Engineering, 2013, 1(4): 207–218

88
Luo Z, Zhu Y, Chen X, Study of the structure size interval of similar test model of the laminated composite plate. Journal of Mechanical Engineering, 2013, 33(6): 870–874 (in Chinese)

89
Luo Z, Zhao X, Zhu Y, Determination method of the structure size interval of dynamic similar models for predicting vibration characteristics of the isotropic sandwich plates. Journal of Vibroengineering, 2014, 16(2): 608–622

90
Zhu Y, Luo Z, Zhao X, Determination method of the structure size interval of dynamic similar models for predicting vibration characteristics of the coated thin plates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(1): 59–68

DOI

91
Luo Z, Wang Y, Zhu Y, The similitude design method of thin-walled annular plates and determination of structural size intervals. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(13): 2158–2168

92
Luo Z, Wang Y, Zhai J, Accurate prediction approach of dynamic characteristics for a rotating thin walled annular plate considering the centrifugal stress requirement. Journal of Vibroengineering, 2016, 18(5): 3104–3116

DOI

93
Luo Z, Zhu Y, Liu H, Dynamic similitude design method of the distorted model on variable thickness cantilever plates. Applied Sciences, 2016, 6(8): 228–235

DOI

Outlines

/