RESEARCH ARTICLE

Determination of energy dissipation of a spider silk structure under impulsive loading

  • Jorge ALENCASTRE ,
  • Carlos MAGO ,
  • Richard RIVERA
Expand
  • Pontificia Universidad Católica del Perú, Lima, Perú

Received date: 02 Mar 2015

Accepted date: 02 Aug 2015

Published date: 23 Sep 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Various researches and studies have demonstrated that spider silk is much stronger and more deformable than a steel string of the same diameter from a mechanical approach. These excellent properties have caused many scientific disciplines to get involved, such as bio-mechanics, bio-materials and bio-mimetics, in order to create a material of similar properties and characteristics. It should be noted that the researches and studies have been oriented mainly as a quasi-static model. For this research, the analysis has taken a dynamic approach and determined the dissipation energy of a structure which is made of spider silk “Dragline” and produced by the Argiope-Argentata spider, through an analytical-experimental way, when being subjected to impulsive loading. Both experimental and analytical results, the latter obtained by using adjusted models, have given high levels of dissipation energy during the first cycle of vibration, which are consistent with the values suggested by other authors.

Cite this article

Jorge ALENCASTRE , Carlos MAGO , Richard RIVERA . Determination of energy dissipation of a spider silk structure under impulsive loading[J]. Frontiers of Mechanical Engineering, 2015 , 10(3) : 306 -310 . DOI: 10.1007/s11465-015-0349-7

Acknowledgements

The researchers would like to express their acknowledgements to professors Jorge Moreno and Richard Rivera, from the acoustics laboratory of the Pontificia Universidad Católica del Perú, for their most valuable collaboration with the experimental development of the research.
1
Gosline J M, Guerette P A, Ortlepp C S,  The mechanical design of spider silks: From fibroin sequence to mechanical function. The Journal of experimental biology, 1999, 202(Pt 23): 3295–3303

PMID

2
Friedrichr B. Vibration and spider behavior. In: Haupt J, ed. XI Europäisches Arachnologisches Colloquium. Berline, 1988 (in German)

3
Agnarsson I, Kuntner M, Blackledge T A. Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. Toughest Biomaterial, 2010, 5(9): e11234

DOI

4
Anita H. The Wonderful World of arachnids. Mexico City: Fondo de Cultura Económica, 1993 (in Spanish)

5
Vollrath F. Strength and structure of spiders’ silks. Review in Molecular Biotechnology, 2000, 74(2): 67–83

DOI PMID

6
Ko F K, Jovicic J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules, 2004, 5(3): 780–785

DOI PMID

7
Lin L H, Edmonds D T, Vollrath F. Structural engineering of an orb-spider’s web. Nature, 1995, 373(6510): 146–148

DOI

8
Alencastre J, Vera Mechan J. Caracterización de los parámetros dinámicos de una estructura hecha de seda de araña. In: 11° Congreso Interamericano de Computación. 2013 (in Spanish)

9
Pérez Rigueiro J M, Elicesy G V. Strategies of Nature in the Design of Materials: Spider Silk. Online Library of Iberian Arachnology Group, 2002 (in Spanish)

10
Sensenig A T, Lorentz K A, Kelly S P,  Spider orb webs rely on radial threads to absorb prey kinetic energy. Journal of the Royal Society, Interface, 2012, 9(73): 1880–1891

DOI PMID

11
Blamires S J, Wu C L, Blackledge T A,  Post-secretion processing influences spider silk performance. Journal of the Royal Society, Interface, 2012, 9(75): 2479–2487

DOI PMID

Outlines

/