RESEARCH ARTICLE

Dynamics of structural systems with various frequency-dependent damping models

  • Li LI ,
  • Yujin HU ,
  • Weiming DENG ,
  • Lei LÜ ,
  • Zhe DING
Expand
  • School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 15 Jan 2015

Accepted date: 02 Feb 2015

Published date: 01 Apr 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The aim of this paper is to present the dynamic analyses of the system involving various damping models. The assumed frequency-dependent damping forces depend on the past history of motion via convolution integrals over some damping kernel functions. By choosing suitable damping kernel functions of frequency-dependent damping model, it may be derived from the familiar viscoelastic materials. A brief review of literature on the choice of available damping models is presented. Both the mode superposition method and Fourier transform method are developed for calculating the dynamic response of the structural systems with various damping models. It is shown that in the case of non-deficient systems with various damping models, the modal analysis with repeated eigenvalues are very similar to the traditional modal analysis used in undamped or viscously damped systems. Also, based on the pseudo-force approach, we transform the original equations of motion with nonzero initial conditions into an equivalent one with zero initial conditions and therefore present a Fourier transform method for the dynamics of structural systems with various damping models. Finally, some case studies are used to show the application and effectiveness of the derived formulas.

Cite this article

Li LI , Yujin HU , Weiming DENG , Lei LÜ , Zhe DING . Dynamics of structural systems with various frequency-dependent damping models[J]. Frontiers of Mechanical Engineering, 2015 , 10(1) : 48 -63 . DOI: 10.1007/s11465-015-0330-5

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 51375184).
1
Rayleigh L. The Theory of Sound. New York: Dover Publications, 1877

2
Caughey T K, O’Kelly M E J. Classical normal modes in damped linear dynamic systems. Journal of Applied Mechanics, 1965, 32(3): 583–588

DOI

3
Adhikari S. Structural Dynamic Analysis with Generalized Damping Models: Analysis. Hoboken: John Wiley & Sons, 2013

4
Liu C, Jing X, Daley S, Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56–57(May): 55–80

DOI

5
Li L, Hu Y. Generalized mode acceleration and modal truncation augmentation methods for the harmonic response analysis of nonviscously damped systems. Mechanical Systems and Signal Processing, 2015, 52–53(February): 46–59

DOI

6
Bagley R L, Torvik P J. Fractional calculus— A different approach to the analysis of viscoelastically damped structures. AIAA Journal, 1983, 21(5): 741–748

DOI

7
Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Singapore: World Scientific, 2010

8
Lewandowski R, Chorążyczewski B. Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Computers & Structures, 2010, 88(1–2): 1–17

DOI

9
Di Paola M, Pinnola F P, Zingales M. Fractional differential equations and related exact mechanical models. Computers & Mathematics with Applications (Oxford, England), 2013, 66(5): 608–620

DOI

10
Enelund M, Lesieutre G A. Time domain modeling of damping using anelastic displacement fields and fractional calculus. International Journal of Solids and Structures, 1999, 36(29): 4447– 4472

DOI

11
Di Paola M, Pirrotta A, Valenza A. Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results. Mechanics of Materials, 2011, 43(12): 799–806

DOI

12
Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. Journal of Applied Physics, 1954, 25(11): 1385–1391

DOI

13
Biot M A. Variational principles in irreversible thermodynamics with application to viscoelasticity. Physical Review, 1955, 97(6): 1463–1469

DOI

14
Adhikari S. Structural Dynamic Analysis with Generalized Damping Models: Identification. Hoboken: John Wiley & Sons, 2013

15
Li L, Hu Y, Wang X. Design sensitivity analysis of dynamic response of nonviscously damped systems. Mechanical Systems and Signal Processing, 2013, 41(1–2): 613–638

DOI

16
Li L, Hu Y, Wang X. Improved approximate methods for calculating frequency response function matrix and response of MDOF systems with viscoelastic hereditary terms. Journal of Sound and Vibration, 2013, 332(15): 3945–3956

DOI

17
Zopf C, Hoque S, Kaliske M. Comparison of approaches to model viscoelasticity based on fractional time derivatives. Computational Materials Science, 2015, 98(February): 287–296

DOI

18
Woodhouse J. Linear damping models for structural vibration. Journal of Sound and Vibration, 1998, 215(3): 547–569

DOI

19
Golla D F, Hughes P C. Dynamics of viscoelastic structures-A time domain finite element formulation. Journal of Applied Mechanics, 1985, 52(4): 897–906

DOI

20
McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures. Journal of Vibration and Acoustics, 1993, 115(1): 103–110

DOI

21
Lesieutre G A. Finite element modeling of frequency-dependent material damping using augmented thermodynamic fields. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1040–1050

DOI

22
Lesieutre G A. Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties. International Journal of Solids and Structures, 1992, 29(12): 1567–1579

DOI

23
Renaud F, Dion J L, Chevallier G, A new identification method of viscoelastic behavior: Application to the generalized Maxwell model. Mechanical Systems and Signal Processing, 2011, 25(3): 991–1010

DOI

24
Koeller R. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics, 1984, 51(2): 299–307

DOI

25
Adhikari S, Woodhouse J. Identification of damping: Part 1, viscous damping. Journal of Sound and Vibration, 2001, 243(1): 43–61

DOI

26
García-Barruetabeía J, Cortés F, Manuel Abete J. Influence of nonviscous modes on transient response of lumped parameter systems with exponential damping. Journal of Vibration and Acoustics, 2011, 133(6): 064502

DOI

27
Li L, Hu Y, Wang X, Eigensensitivity analysis for asymmetric nonviscous systems. AIAA Journal, 2013, 51(3): 738–741

DOI

28
Adhikari S. Damping models for structural vibration. Dissertation for the Doctoral Degree. Cambridge: University of Cambridge, 2000

29
Gonzalez-Lopez S, Fernandez-Saez J. Vibrations in Euler-Bernoulli beams treated with non-local damping patches. Computers & Structures, 2012, 108–109: 125–134

DOI

30
Friswell M I, Adhikari S, Lei Y. Non-local finite element analysis of damped beams. International Journal of Solids and Structures, 2007, 44(22–23): 7564–7576

DOI

31
Pan Y, Wang Y. Frequency-domain analysis of exponentially damped linear systems. Journal of Sound and Vibration, 2013, 332(7): 1754–1765

DOI

32
Adhikari S, Friswell M I, Lei Y. Modal analysis of nonviscously damped beams. Journal of Applied Mechanics, 2007, 74(5): 1026–1030

DOI

33
Palmeri A, Ricciardelli F, De Luca A, State space formulation for linear viscoelastic dynamic systems with memory. Journal of Engineering Mechanics, 2003, 129(7): 715–724

DOI

34
Wagner N, Adhikari S. Symmetric state-space formulation for a class of non-viscously damped systems. AIAA Journal, 2003, 41(5): 951–956

DOI

35
Palmeri A, Adhikari S. A Galerkin-type state-space approach for transverse vibrations of slender double-beam systems with visco-elastic inner layer. Journal of Sound and Vibration, 2011, 330(26): 6372–6386

DOI

36
Tran Q H, Ouisse M, Bouhaddi N. A robust component mode synthesis method for stochastic damped vibroacoustics. Mechanical Systems and Signal Processing, 2010, 24(1): 164–181

DOI

37
Di Paola M, Pinnola F P, Spanos P D. Analysis of multi-degree-of-freedom systems with fractional derivative elements of rational order. In: Proceedings of 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA). IEEE, 2014, 1–6

38
Adhikari S, Pascual B. Iterative methods for eigenvalues of viscoelastic systems. Journal of Vibration and Acoustics, 2011, 133(2): 021002

DOI

39
Adhikari S, Pascual B. Eigenvalues of linear viscoelastic systems. Journal of Sound and Vibration, 2009, 325(4–5): 1000–1011

DOI

40
Cortés F, Elejabarrieta M J. Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44–47): 6448–6462

DOI

41
Bilasse M, Charpentier I, Daya E M, A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49–52): 3999–4004

42
Daya E, Potier-Ferry M. A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Computers & Structures, 2001, 79(5): 533–541

DOI

43
Lázaro M, Pérez-Aparicio J L, Epstein M. A viscous approach based on oscillatory eigensolutions for viscoelastically damped vibrating systems. Mechanical Systems and Signal Processing, 2013, 40(2): 767–782

DOI

44
LáZaro M, Pérez–Aparicio J L. Multiparametric computation of eigenvalues for linear viscoelastic structures. Computers & Structures, 2013, 117(February): 67–81

DOI

45
Lázaro M, Pérez-Aparicio J L. Dynamic analysis of frame structures with free viscoelastic layers: New closed-form solutions of eigenvalues and a viscous approach. Engineering Structures, 2013, 54(September): 69–81

DOI

46
Pawlak Z, Lewandowski R. The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Computers & Structures, 2013, 125(September): 53–61

DOI

47
Van Beeumen R, Meerbergen K, Michiels W. A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 2013, 35(1): A327–A350

DOI

48
Güttel S, van Beeumen R, Meerbergen K, NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing, 2014, 36(6): A2842– A2864

DOI

49
MSC. Software Corporation. MD/MSC Nastran 2010 Dynamic Analysis User’s Guide, 2010

50
Li L, Hu Y, Wang X. Design sensitivity and Hessian matrix of generalized eigenproblems. Mechanical Systems and Signal Processing, 2014, 43(1–2): 272–294

DOI

51
Murthy D V, Haftka R T. Derivatives of eigenvalues and eigenvectors of a general complex matrix. International Journal for Numerical Methods in Engineering, 1988, 26(2): 293–311

DOI

52
Andrew A L. Convergence of an iterative method for derivatives of eigensystems. Journal of Computational Physics, 1978, 26(1): 107–112

DOI

53
Diekmann O, van Gils S A, Lunel S V, Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Berlin: Springer-Verlag, 1995

54
Li L, Hu Y, Wang X. Eliminating the modal truncation problem encountered in frequency responses of viscoelastic systems. Journal of Sound and Vibration, 2014, 333(4): 1182–1192

DOI

55
Li L, Hu Y, Wang X, A hybrid expansion method for frequency response functions of non-proportionally damped systems. Mechanical Systems and Signal Processing, 2014, 42(1–2): 31–41

DOI

56
Adhiakri S. Classical normal modes in nonviscously damped linear systems. AIAA Journal, 2001, 39(5): 978–980

DOI

57
Veletsos A S, Ventura C E. Dynamic analysis of structures by the DFT method. Journal of Structural Engineering, 1985, 111(12): 2625–2642

DOI

58
Lee U, Kim S, Cho J. Dynamic analysis of the linear discrete dynamic systems subjected to the initial conditions by using an FFT-based spectral analysis method. Journal of Sound and Vibration, 2005, 288(1–2): 293–306

DOI

59
Mansur W, Soares D Jr, Ferro M. Initial conditions in frequency-domain analysis: The FEM applied to the scalar wave equation. Journal of Sound and Vibration, 2004, 270(4–5): 767–780

DOI

60
Barkanov E, Hufenbach W, Kroll L. Transient response analysis of systems with different damping models. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 33–46

DOI

61
Brigham E O. The Fast Fourier Transform and Its Applications. Englewood Cliffs: Prentice-Hall, 1988

62
Duhamel P, Vetterli M. Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing, 1990, 19(4): 259–299

DOI

64
Zghal S, Bouazizi M L, Bouhaddi N. Reduced-order model for non-linear dynamic analysis of viscoelastic sandwich structures in time domain. In: Proceedings of International Conference on Structure Nonlinear Dynamics and Diagnosis. EDP Sciences, 2014, 08003

Outlines

/