Review on piezoelectric actuators: materials, classifications, applications, and recent trends
Xuyang ZHOU, Shuang WU, Xiaoxu WANG, Zhenshan WANG, Qixuan ZHU, Jinshuai SUN, Panfeng HUANG, Xuewen WANG, Wei HUANG, Qianbo LU
Review on piezoelectric actuators: materials, classifications, applications, and recent trends
Piezoelectric actuators are a class of actuators that precisely transfer input electric energy into displacement, force, or movement outputs efficiently via inverse piezoelectric effect-based electromechanical coupling. Various types of piezoelectric actuators have sprung up and gained widespread use in various applications in terms of compelling attributes, such as high precision, flexibility of stoke, immunity to electromagnetic interference, and structural scalability. This paper systematically reviews the piezoelectric materials, operating principles, representative schemes, characteristics, and potential applications of each mainstream type of piezoelectric actuator. Herein, we intend to provide a more scientific and nuanced perspective to classify piezoelectric actuators into direct and indirect categories with several subcategories. In addition, this review outlines the pros and cons and the future development trends for all kinds of piezoelectric actuators by exploring the relations and mechanisms behind them. The rich content and detailed comparison can help build an in-depth and holistic understanding of piezoelectric actuators and pave the way for future research and the selection of practical applications.
piezoelectric actuator / piezoelectric effect / amplified piezoelectric actuator / ultrasonic actuator / stepping actuator / piezoelectric polymer
[1] |
Kumar D, Daudpoto J, Chowdhry B S. Challenges for practical applications of shape memory alloy actuators. Materials Research Express, 2020, 7(7): 073001
CrossRef
Google scholar
|
[2] |
Gao C D, Zeng Z H, Peng S P, Shuai C J. Magnetostrictive alloys: promising materials for biomedical applications. Bioactive Materials, 2022, 8: 177–195
CrossRef
Google scholar
|
[3] |
Ceyssens F, Sadeghpour S, Fujita H, Puers R. Actuators: accomplishments, opportunities and challenges. Sensors and Actuators A: Physical, 2019, 295: 604–611
CrossRef
Google scholar
|
[4] |
Yuan Q, Kato B, Fan K Q, Wang Y. Phased array guided wave propagation in curved plates. Mechanical Systems and Signal Processing, 2023, 185: 109821
CrossRef
Google scholar
|
[5] |
UchinoK. Advanced Piezoelectric Materials: Science and Technology. 2nd ed. Cambridge: Woodhead Publishing Ltd., 2017
|
[6] |
HeywangW, Lubitz K, WersingW. Piezoelectricity: Evolution and Future of a Technology. Heidelberg: Springer, 2008
|
[7] |
Yang C, Youcef-Toumi K. Principle, implementation, and applications of charge control for piezo-actuated nanopositioners: a comprehensive review. Mechanical Systems and Signal Processing, 2022, 171: 108885
CrossRef
Google scholar
|
[8] |
Wang S P, Rong W, Wang L F, Xie H, Sun L, Mills J K. A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing, 2019, 123: 591–605
CrossRef
Google scholar
|
[9] |
Mohith S, Upadhya A R, Navin K P, Kulkarni S M, Rao M. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Materials and Structures, 2021, 30(1): 013002
CrossRef
Google scholar
|
[10] |
Zhang Z M, An Q, Li J M, Zhang W J. Piezoelectric friction–inertia actuator—a critical review and future perspective. The International Journal of Advanced Manufacturing Technology, 2012, 62(5–8): 669–685
CrossRef
Google scholar
|
[11] |
Jeon J, Han C, Han Y M, Choi S B. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool. Smart Materials and Structures, 2014, 23(7): 075002
CrossRef
Google scholar
|
[12] |
Xuan Z F, Jin T, Ha N S, Goo N S, Kim T H, Bae B W, Ko H S, Yoon K W. Performance of piezo-stacks for a piezoelectric hybrid actuator by experiments. Journal of Intelligent Material Systems and Structures, 2014, 25(18): 2212–2220
CrossRef
Google scholar
|
[13] |
Chen F X, Zhang Q J, Gao Y Z, Dong W. A review on the flexure-based displacement amplification mechanisms. IEEE Access, 2020, 8: 205919–205937
CrossRef
Google scholar
|
[14] |
Xu Q S, Li Y M. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mechanism and Machine Theory, 2011, 46(2): 183–200
CrossRef
Google scholar
|
[15] |
Ding Y, Lai L J. Design and analysis of a displacement amplifier with high load capacity by combining bridge-type and Scott–Russell mechanisms. Review of Scientific Instruments, 2019, 90(6): 065102
CrossRef
Google scholar
|
[16] |
Dong W, Chen F X, Gao F T, Yang M, Sun L N, Du Z J, Tang J, Zhang D. Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges. Precision Engineering, 2018, 54: 171–181
CrossRef
Google scholar
|
[17] |
Spanner K, Koc B. Piezoelectric motors, an overview. Actuators, 2016, 5(1): 6
CrossRef
Google scholar
|
[18] |
Hunstig M. Piezoelectric inertia motors—a critical review of history, concepts, design, applications, and perspectives. Actuators, 2017, 6(1): 7
CrossRef
Google scholar
|
[19] |
Tian X Q, Liu Y X, Deng J, Wang L, Chen W S. A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives. Sensors and Actuators A: Physical, 2020, 306: 111971
CrossRef
Google scholar
|
[20] |
MeitzlerA H, Berlincourt D, WelshF S, TierstenH F, CoquinG A, WarnerW A. IEEE Standard on Piezoelectricity. ANSI/IEEE, 198710.1109/IEEESTD.1988.79638
|
[21] |
VoigtW. Crystal Physics Textbook. Leipzig and Berlin: B. G. Teubner, 1910
|
[22] |
CadyW G. Piezoelectricity: An Introduction to the Theory and Applications of Electromechancial Phenomena in Crystals. New York: McGraw-Hill Book Company, Inc., 1946
|
[23] |
HeisingR A. Quartz Crystals for Electrical Circuits, Their Design and Manufacture. New York: D. Van Nostrand Company, Inc., 1946
|
[24] |
MasonW. Hysteresis Losses in Solid Materials, Piezoelectric Crystals and Their Application in Ultrasonics. New York: Van Nostrand, 1950
|
[25] |
MindlinR D. On the equations of motion of piezoelectric crystals. In: Problems of Continuum Mechanics. Philadelphia: SIAM, 1989, 282‒290
|
[26] |
Tiersten H F, Mindlin R D. Forced vibrations of piezoelectric crystal plates. Quarterly of Applied Mathematics, 1962, 20: 107–119
|
[27] |
TierstenH F. Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates. New York: Springer, 2013
|
[28] |
YangJ S. An Introduction to the Theory of Piezoelectricity. Cham: Springer, 2005
|
[29] |
VisintinA. Differential Models of Hysteresis. Heidelberg: Springer, 1994
|
[30] |
Clayton G M, Tien S, Leang K K, Zou Q Z, Devasia S. A review of feedforward control approaches in nanopositioning for high-speed SPM. Journal of Dynamic Systems, Measurement, and Control, 2009, 131(6): 061101
CrossRef
Google scholar
|
[31] |
Sabarianand D V, Karthikeyan P, Muthuramalingam T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mechanical Systems and Signal Processing, 2020, 140: 106634
CrossRef
Google scholar
|
[32] |
Xu Q S. Adaptive integral terminal third-order finite-time sliding-mode strategy for robust nanopositioning control. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6161–6170
CrossRef
Google scholar
|
[33] |
Ling J, Feng Z, Zheng D D, Yang J, Yu H Y, Xiao X H. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mechanical Systems and Signal Processing, 2021, 150: 107235
CrossRef
Google scholar
|
[34] |
Qiu Z C, Chen G H, Zhang X M. Trajectory planning and vibration control of translation flexible hinged plate based on optimization and reinforcement learning algorithm. Mechanical Systems and Signal Processing, 2022, 179: 109362
CrossRef
Google scholar
|
[35] |
Turner B L, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele M A. Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Advanced Healthcare Materials, 2021, 10(17): 2100986
CrossRef
Google scholar
|
[36] |
VijayaM S. Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences. Boca Raton: CRC Press, 2012
|
[37] |
LuanG D, Zhang J D, WangR Q. Piezoelectric Transducers and Arrays. Revised ed. Beijing: Peking University Press, 2005 (in Chinese)
|
[38] |
LindonJ C, Tranter G E, KoppenaalD W. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed. Academic Press, 2017
|
[39] |
Newnham R E, Cross L E. Ferroelectricity: the foundation of a field from form to function. MRS Bulletin, 2005, 30(11): 845–848
CrossRef
Google scholar
|
[40] |
Zhang R, Jiang B, Cao W W, Amin A. Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal. Journal of Materials Science Letters, 2002, 21(23): 1877–1879
CrossRef
Google scholar
|
[41] |
Guo Y P, Luo H S, He T H, Pan X M, Yin Z W. Electric-field-induced strain and piezoelectric properties of a high curie temperature Pb(In1/2Nb1/2)O3-PbTiO3 single crystal. Materials Research Bulletin, 2003, 38(5): 857–864
CrossRef
Google scholar
|
[42] |
Park S E, Shrout T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82(4): 1804–1811
CrossRef
Google scholar
|
[43] |
Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S J. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264–268
CrossRef
Google scholar
|
[44] |
NguyenC H. Interdigital-electrode thin-film piezoelectric microactuators. Dissertation for the Doctoral Degree. Borre: University of South-Eastern Norway, 2018
|
[45] |
Zhang W, Xiong R G. Ferroelectric metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1163–1195
CrossRef
Google scholar
|
[46] |
Cross L E, Newnham R E. History of ferroelectrics. Ceramics and Civilization, 1987, 3: 289–305
|
[47] |
Liu Y, Cai Y, Zhang Y, Tovstopyat A, Liu S, Sun C L. Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines, 2020, 11(7): 630
CrossRef
Google scholar
|
[48] |
BerlincourtD A, CurranD R, JaffeH. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics: Principles and Methods, 1964: 169–270
|
[49] |
Sawaguchi E. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. Journal of the Physical Society of Japan, 1953, 8(5): 615–629
CrossRef
Google scholar
|
[50] |
Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 1954, 25(6): 809–810
CrossRef
Google scholar
|
[51] |
Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J, Li F. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87–93
CrossRef
Google scholar
|
[52] |
Mahapatra S D, Mohapatra P C, Aria A I, Christie G, Mishra Y K, Hofmann S, Thakur V K. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Advancement of Science, 2021, 8(17): 2100864
CrossRef
Google scholar
|
[53] |
Ramadan K S, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 2014, 23(3): 033001
CrossRef
Google scholar
|
[54] |
HarrisonJ S, Ounaies Z. Polymers, piezoelectric. In: Schwartz M, ed. Encyclopedia of Smart Materials. John Wiley & Sons, 2002
|
[55] |
JonesG D, Assink R A, DargavilleT R, ChaplyaP M, CloughR L, ElliottJ M, Martin J W, MoweryD M, CelinaM C. Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts. Technical Report SAND2005-6846, 2005
|
[56] |
Chen Q X, Payne P A. Industrial applications of piezoelectric polymer transducers. Measurement Science & Technology, 1995, 6(3): 249
CrossRef
Google scholar
|
[57] |
KimJ Y H, Cheng A, TaiY C. Parylene-C as a piezoelectric material. In: Proceedings of 2011 IEEE the 24th International Conference on Micro Electro Mechanical Systems. Cancun: IEEE, 2011, 473–476
|
[58] |
Park C, Ounaies Z, Wise K E, Harrison J S. In situ poling and imidization of amorphous piezoelectric polyimides. Polymer, 2004, 45(16): 5417–5425
CrossRef
Google scholar
|
[59] |
AtkinsonG M, Pearson R E, OunaiesZ, ParkC, Harrison J S, DoganS, MidkiffJ A. Novel piezoelectric polyimide MEMS. In: Proceedings of TRANSDUCERS’03. The 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664). Boston: IEEE, 2003, 782–785
|
[60] |
Park K I, Lee M, Liu Y, Moon S, Hwang G T, Zhu G, Kim J E, Kim S O, Kim D K, Wang Z L, Lee K J. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Advanced Materials, 2012, 24(22): 2999–3004
CrossRef
Google scholar
|
[61] |
Prashanthi K, Miriyala N, Gaikwad R D, Moussa W, Rao V R, Thundat T. Vibtrational energy harvesting using photo-patternable piezoelectric nanocomposite cantilevers. Nano Energy, 2013, 2(5): 923–932
CrossRef
Google scholar
|
[62] |
Newnham R E, Skinner D P, Cross L E. Connectivity and piezoelectric−pyroelectric composites. Materials Research Bulletin, 1978, 13(5): 525–536
CrossRef
Google scholar
|
[63] |
Sessler G M, West J E. Self-biased condenser microphone with high capacitance. The Journal of the Acoustical Society of America, 1962, 34(11): 1787–1788
CrossRef
Google scholar
|
[64] |
Mohebbi A, Mighri F, Ajji A, Rodrigue D. Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis. Polymers for Advanced Technologies, 2017, 28(4): 476–483
CrossRef
Google scholar
|
[65] |
Fang P, Wegener M, Wirges W, Gerhard R, Zirkel L. Cellular polyethylene-naphthalate ferroelectrets: foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Applied Physics Letters, 2007, 90(19): 192908
CrossRef
Google scholar
|
[66] |
Nakayama M, Uenaka Y, Kataoka S, Oda Y, Yamamoto K, Tajitsu Y. Piezoelectricity of ferroelectret porous polyethylene thin film. Japanese Journal of Applied Physics, 2009, 48(9S1): 09KE05
CrossRef
Google scholar
|
[67] |
Kang L H, Han J H. Prediction of actuation displacement and the force of a pre-stressed piezoelectric unimorph (PUMPS) considering nonlinear piezoelectric coefficient and elastic modulus. Smart Materials and Structures, 2010, 19(9): 094006
CrossRef
Google scholar
|
[68] |
Zhu Y P, Liu W J, Jia K M, Liao W J, Xie H K. A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift. Sensors and Actuators A: Physical, 2011, 167(2): 495–501
CrossRef
Google scholar
|
[69] |
Bakhtiari-Shahri M, Moeenfard H. Energy harvesting from unimorph piezoelectric circular plates under random acoustic and base acceleration excitations. Mechanical Systems and Signal Processing, 2019, 130: 502–523
CrossRef
Google scholar
|
[70] |
Gao X Y, Yang J K, Wu J G, Xin X D, Li Z M, Yuan X T, Shen X Y, Dong S X. Piezoelectric actuators and motors: materials, designs, and applications. Advanced Materials Technologies, 2020, 5(1): 1900716
CrossRef
Google scholar
|
[71] |
Yao L Q, Zhang J G, Lu L, Lai M O. Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field. Sensors and Actuators A: Physical, 2004, 115(1): 168–175
CrossRef
Google scholar
|
[72] |
Wang Q M, Zhang Q M, Xu B M, Liu R B, Cross L E. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. Journal of Applied Physics, 1999, 86(6): 3352–3360
CrossRef
Google scholar
|
[73] |
TaleghaniB K. Validation of high displacement piezoelectric actuator finite element models. In: Proceedings of proceedings of the Fifth European Conference on Smart Structures and Materials. Glasgow: SPIE, 2000, 17–45
|
[74] |
Heo S, Wiguna T, Park H C, Goo N S. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of Bionics Engineering, 2007, 4(3): 151–158
CrossRef
Google scholar
|
[75] |
Maaspuro M. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—a review. Microelectronics Reliability, 2016, 63: 342–353
CrossRef
Google scholar
|
[76] |
Lee D O, Kang L H, Han J H. Active vibration isolation demonstration system using the piezoelectric unimorph with mechanically pre-stressed substrate. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1399–1409
CrossRef
Google scholar
|
[77] |
Zhang S J, Zhao H F, Ma X F, Deng J, Liu Y X. A 3-DOF piezoelectric micromanipulator based on symmetric and antisymmetric bending of a cross-shaped beam. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8264–8275
CrossRef
Google scholar
|
[78] |
Zhou X X, Li K, Liu Y X, Sun J H, Li H Y, Chen W S, Deng J. Development of an antihydropressure miniature underwater robot with multilocomotion mode using piezoelectric pulsed-jet actuator. IEEE Transactions on Industrial Electronics, 2023, 70(5): 5044–5054
CrossRef
Google scholar
|
[79] |
Haertling G H. Rainbow ceramics: a new type of ultra-high-displacement actuator. American Ceramic Society Bulletin, 1994, 73(1): 93–96
|
[80] |
HellbaumR F, Bryant R G, FoxR L, AntonyN J Jr, Rohrbach W W, SimpsonJ O. Thin layer composite unimorph ferroelectric driver and sensor. US Patent 6734603 B2, 2004-5-11
|
[81] |
Wise S A. Displacement properties of RAINBOW and THUNDER piezoelectric actuators. Sensors and Actuators A: Physical, 1998, 69(1): 33–38
CrossRef
Google scholar
|
[82] |
MossiK M, Bishop R P. Characterization of different types of high-performance THUNDER actuators. In: Proceedings of Smart Structures and Materials 1999: Smart Materials Technologies. Newport Beach: SPIE, 1999, 43–52
|
[83] |
Gunda A, Özkayar G, Tichem M, Ghatkesar M K. Proportional microvalve using a unimorph piezoelectric microactuator. Micromachines, 2020, 11(2): 130
CrossRef
Google scholar
|
[84] |
Roy K, Lee J E Y, Lee C K. Thin-film PMUTs: a review of over 40 years of research. Microsystems & Nanoengineering, 2023, 9(1): 95
CrossRef
Google scholar
|
[85] |
Ci P H, Zhang L, Liu G X, Dong S X. Large electrical manipulation of permittivity in BaTiO3 and Pb(Zr,Ti)O3 bimorph heterostructure. Applied Physics Letters, 2014, 105(7): 072903
CrossRef
Google scholar
|
[86] |
UchinoK. Ferroelectric Devices. 2nd ed. Boca Raton: CRC Press, 2018
|
[87] |
Rios S A, Fleming A J. A new electrical configuration for improving the range of piezoelectric bimorph benders. Sensors and Actuators A: Physical, 2015, 224: 106–110
CrossRef
Google scholar
|
[88] |
Karpelson M, Wei G Y, Wood R J. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2012, 176: 78–89
CrossRef
Google scholar
|
[89] |
Ali A, Pasha R A, Elahi H, Sheeraz M A, Bibi S, Hassan Z U, Eugeni M, Gaudenzi P. Investigation of deformation in bimorph piezoelectric actuator: analytical, numerical and experimental approach. Integrated Ferroelectrics, 2019, 201(1): 94–109
CrossRef
Google scholar
|
[90] |
Ghosh B, Jain R K, Majumder S, Roy S S, Mukhopadhyay S. Experimental characterizations of bimorph piezoelectric actuator for robotic assembly. Journal of Intelligent Material Systems and Structures, 2017, 28(15): 2095–2109
CrossRef
Google scholar
|
[91] |
Jain R K, Majumder S, Ghosh B, Saha S. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. Journal of Manufacturing Systems, 2015, 35: 76–91
CrossRef
Google scholar
|
[92] |
HallA J, Riddick J C. Micro-electro-mechanical flapping wing technology for micro air vehicles. In: Proceedings of Bioinspiration, Biomimetics, and Bioreplication. San Diego: SPIE, 2012, 83390L
|
[93] |
Hu J, Chen S, Wang L. A new insect-scale piezoelectric robot with asymmetric structure. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8194–8202
CrossRef
Google scholar
|
[94] |
Liu Y Z, Hao Z W, Yu J X, Zhou X R, Lee P S, Sun Y, Mu Z C, Zeng F L. A high-performance soft actuator based on a poly (vinylidene fluoride) piezoelectric bimorph. Smart Materials and Structures, 2019, 28(5): 055011
CrossRef
Google scholar
|
[95] |
Khan M U, Butt Z, Elahi H, Asghar W, Abbas Z, Shoaib M, Bashir M A. Deflection of coupled elasticity–electrostatic bimorph PVDF material: theoretical, FEM and experimental verification. Microsystem Technologies, 2019, 25(8): 3235–3242
CrossRef
Google scholar
|
[96] |
Yuan Y H, Shyong Chow K, Du H J, Wang P H, Zhang M S, Yu S K, Liu B. A ZnO thin-film driven microcantilever for nanoscale actuation and sensing. International Journal of Smart and Nano Materials, 2013, 4(2): 128–141
CrossRef
Google scholar
|
[97] |
Moradi-Dastjerdi R, Meguid S A, Rashahmadi S. Dynamic behavior of novel micro fuel pump using zinc oxide nanocomposite diaphragm. Sensors and Actuators A: Physical, 2019, 297: 111528
CrossRef
Google scholar
|
[98] |
Ivan I A, Rakotondrabe M, Agnus J, Bourquin R, Chaillet N, Lutz P, Poncot J C, Duffait R, Bauer O. Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT mateirals for composite bimorph actuators. Reviews on Advanced Materials Science, 2010, 24(15–16): 1–9
|
[99] |
Kulikov A, Blagov A, Marchenkov N, Targonsky A, Eliovich Y, Pisarevsky Y, Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: static and quasistatic modes. Sensors and Actuators A: Physical, 2019, 291: 68–74
CrossRef
Google scholar
|
[100] |
Ho S T, Jan S J. A piezoelectric motor for precision positioning applications. Precision Engineering, 2016, 43: 285–293
CrossRef
Google scholar
|
[101] |
Zhang Y, Zhang W J, Hesselbach J, Kerle H. Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Review of Scientific Instruments, 2006, 77(3): 035112
CrossRef
Google scholar
|
[102] |
Tolliver L, Xu T B, Jiang X N. Finite element analysis of the piezoelectric stacked-HYBATS transducer. Smart Materials and Structures, 2013, 22(3): 035015
CrossRef
Google scholar
|
[103] |
Sahoo B, Panda P K. Fabrication of simple and ring-type piezo actuators and their characterization. Smart Materials Research, 2012, 2012: 821847
CrossRef
Google scholar
|
[104] |
Gao X Y, Xin X D, Wu J G, Chu Z Q, Dong S X. A multilayered-cylindrical piezoelectric shear actuator operating in shear (d15) mode. Applied Physics Letters, 2018, 112(15): 152902
CrossRef
Google scholar
|
[105] |
Huang H H, Wang L F, Wu Y. Design and experimental research of a rotary micro-actuator based on a shearing piezoelectric stack. Micromachines, 2019, 10(2): 96
CrossRef
Google scholar
|
[106] |
JiangX N, Rehrig P W, HackenbergerW S, SmithE, DongS X, ViehlandD, Moore J Jr, PatrickB. Advanced piezoelectric single crystal based actuators. In: Proceedings of Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics. San Diego: SPIE, 2005, 253–262
|
[107] |
Liu R B, Wang Q M, Zhang Q M, Cross L E. Piezoelectric pseudo-shear mode actuator made by L-shape joint bonding. Journal of Materials Science Materials in Electronics, 1998, 9(6): 453–456
CrossRef
Google scholar
|
[108] |
DeMiguel-Ramos M, Díaz-Durán B, Escolano J M, Barba M, Mirea T, Olivares J, Clement M, Iborra E. Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator. Sensors and Actuators B: Chemical, 2017, 239: 1282–1288
CrossRef
Google scholar
|
[109] |
Claeyssen F, Letty R L, Barillot F, Sosnicki O. Amplified piezoelectric actuators: static & dynamic applications. Ferroelectrics, 2007, 351(1): 3–14
CrossRef
Google scholar
|
[110] |
Chen F X, Gao Y Z, Dong W, Du Z J. Design and control of a passive compliant piezo-actuated micro-gripper with hybrid flexure hinges. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11168–11177
CrossRef
Google scholar
|
[111] |
Dsouza R D, Navin K P, Theodoridis T, Sharma P. Design, fabrication and testing of a 2 DOF compliant flexural microgripper. Microsystem Technologies, 2018, 24(9): 3867–3883
CrossRef
Google scholar
|
[112] |
Xu Q S. Design and smooth position/force switching control of a miniature gripper for automated microhandling. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1023–1032
CrossRef
Google scholar
|
[113] |
Sun X T, Chen W H, Tian Y L, Fatikow S, Zhou R, Zhang J B, Mikczinski M. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation. Review of Scientific Instruments, 2013, 84(8): 085002
CrossRef
Google scholar
|
[114] |
Tian Y L, Shirinzadeh B, Zhang D W, Alici G. Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mechanical Systems and Signal Processing, 2009, 23(3): 957–978
CrossRef
Google scholar
|
[115] |
WuQ G, Yang D H, LiA H, ZhouG H, YangB T. Design and test of a novel cost-effective piezo driven actuator with a two-stage flexure amplifier for chopping mirrors. In: Proceedings of Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II. Amsterdam: SPIE, 2012, 84505G
|
[116] |
Na T W, Choi J H, Jung J Y, Kim H G, Han J H, Park K C, Oh I K. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism. Smart Materials and Structures, 2016, 25(9): 095028
CrossRef
Google scholar
|
[117] |
Chen F X, Du Z J, Yang M, Gao F T, Dong W, Zhang D. Design and analysis of a three-dimensional bridge-type mechanism based on the stiffness distribution. Precision Engineering, 2018, 51: 48–58
CrossRef
Google scholar
|
[118] |
Juuti J, Kordás K, Lonnakko R, Moilanen V P, Leppävuori S. Mechanically amplified large displacement piezoelectric actuators. Sensors and Actuators A: Physical, 2005, 120(1): 225–231
CrossRef
Google scholar
|
[119] |
Chen C M, Hsu Y C, Fung R F. System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator. Applied Mathematical Modelling, 2012, 36(6): 2788–2802
CrossRef
Google scholar
|
[120] |
SashidaT, Kenjo T. An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993
|
[121] |
ZhaoC S. Ultrasonic Motors: Technologies and Applications. Heidelberg: Springer, 2011
|
[122] |
Izuhara S, Mashimo T. Design and characterization of a thin linear ultrasonic motor for miniature focus systems. Sensors and Actuators A: Physical, 2021, 329: 112797
CrossRef
Google scholar
|
[123] |
Uchino K. Piezoelectric ultrasonic motors: overview. Smart Materials and Structures, 1998, 7(3): 273
CrossRef
Google scholar
|
[124] |
UchinoK. Piezoelectric Actuators and Ultrasonic Motors. New York: Springer, 1996
|
[125] |
Li S Y, Ou W C, Yang M, Guo C, Lu C Y, Hu J H. Temperature evaluation of traveling-wave ultrasonic motor considering interaction between temperature rise and motor parameters. Ultrasonics, 2015, 57: 159–166
CrossRef
Google scholar
|
[126] |
Ryndzionek R, Sienkiewicz Ł. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors. Ultrasonics, 2021, 116: 106471
CrossRef
Google scholar
|
[127] |
Ci P H, Liu G X, Chen Z J, Dong S X. A standing wave linear ultrasonic motor operating in face-diagonal-bending mode. Applied Physics Letters, 2013, 103(10): 102904
CrossRef
Google scholar
|
[128] |
Wang L, Liu J K, Liu Y X, Tian X Q, Yan J P. A novel single-mode linear piezoelectric ultrasonic motor based on asymmetric structure. Ultrasonics, 2018, 89: 137–142
CrossRef
Google scholar
|
[129] |
Liu Y X, Shi S J, Li C H, Chen W S, Liu J K. A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode. Sensors and Actuators A: Physical, 2016, 251: 119–125
CrossRef
Google scholar
|
[130] |
He S P, Shi S J, Zhang Y H, Chen W S. Design and experimental research on a deep-sea resonant linear ultrasonic motor. IEEE Access, 2018, 6: 57249–57256
CrossRef
Google scholar
|
[131] |
Jian Y, Yao Z Y, Silberschmidt V V. Linear ultrasonic motor for absolute gravimeter. Ultrasonics, 2017, 77: 88–94
CrossRef
Google scholar
|
[132] |
Yeh C H, Su F C, Shan Y S, Dosaev M, Selyutskiy Y, Goryacheva I, Ju M S. Application of piezoelectric actuator to simplified haptic feedback system. Sensors and Actuators A: Physical, 2020, 303: 111820
CrossRef
Google scholar
|
[133] |
Zhang Q, Chen W S, Liu Y X, Liu J K, Jiang Q. A frog-shaped linear piezoelectric actuator using first-order longitudinal vibration mode. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2188–2195
CrossRef
Google scholar
|
[134] |
Zhang B L, Yao Z Y, Liu Z, Li X N. A novel L-shaped linear ultrasonic motor operating in a single resonance mode. Review of Scientific Instruments, 2018, 89(1): 015006
CrossRef
Google scholar
|
[135] |
Liu Y X, Chen W S, Liu J K, Shi S J. A cylindrical standing wave ultrasonic motor using bending vibration transducer. Ultrasonics, 2011, 51(5): 527–531
CrossRef
Google scholar
|
[136] |
LiuJ K, Xie T, ChenW S, JiaC H. A standing wave ultrasonic motor using longitudinal vibration transducers. Key Engineering Materials, 2011, 474–476: 661–665
|
[137] |
Dabbagh V, Sarhan A A D, Akbari J, Mardi N A. Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source. Precision Engineering, 2017, 48: 172–180
CrossRef
Google scholar
|
[138] |
Fan P Q, Shu X C, Yuan T, Li C D. A novel high thrust–weight ratio linear ultrasonic motor driven by single-phase signal. Review of Scientific Instruments, 2018, 89(8): 085001
CrossRef
Google scholar
|
[139] |
Yeh C H, Su F C, Shan Y S, Dosaev M, Selyutskiy Y, Goryacheva I, Ju M S. Application of piezoelectric actuator to simplified haptic feedback system. Sensors and Actuators A: Physical, 2020, 303: 111820
CrossRef
Google scholar
|
[140] |
Peng T J, Wu X Y, Liang X, Shi H Y, Luo F. Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor. Ultrasonics, 2015, 61: 157–161
CrossRef
Google scholar
|
[141] |
Doshida Y, Tamura H, Tanaka S. High-power properties of crystal-oriented (Sr,Ca)2NaNb5O15 piezoelectric ceramics and their application to ultrasonic motors. Japanese Journal of Applied Physics, 2019, 58(SG): SGGA07
CrossRef
Google scholar
|
[142] |
Uchino K, Cagatay S, Koc B, Dong S, Bouchilloux P, Strauss M. Micro piezoelectric ultrasonic motors. Journal of Electroceramics, 2004, 13(1–3): 393–401
CrossRef
Google scholar
|
[143] |
Zhou Y N, Chang J J, Liao X X, Feng Z H. Ring-shaped traveling wave ultrasonic motor for high-output power density with suspension stator. Ultrasonics, 2020, 102: 106040
CrossRef
Google scholar
|
[144] |
Chen W S, Liu Y X, Yang X H, Liu J K. Ring-type traveling wave ultrasonic motor using a radial bending mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 197–202
CrossRef
Google scholar
|
[145] |
Sun H Y, Yin H, Liu J, Zhang X L. Preload optimization method for traveling-wave rotary ultrasonic motor. Processes, 2021, 9(7): 1164
CrossRef
Google scholar
|
[146] |
Jia B T, Wang L, Wang R F, Jin J M, Zhao Z H, Wu D W. A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation. Smart Materials and Structures, 2021, 30(3): 035016
CrossRef
Google scholar
|
[147] |
Zhang J, Wang X Z. Design and experimental study of ultrasonic vibration feeding device with double symmetrical structure. IEEE Access, 2022, 10: 63481–63495
CrossRef
Google scholar
|
[148] |
UchinoK. Piezoelectric motors for camera modules. In: Proceedings of International Conference on New Actuators. Bremen: International Center for Actuators and Transducers, 2008
|
[149] |
Li Z, Wang Z, Guo P, Zhao L, Wang Q J. A ball-type multi-DOF ultrasonic motor with three embedded traveling wave stators. Sensors and Actuators A: Physical, 2020, 313: 112161
CrossRef
Google scholar
|
[150] |
Ren W H, Yang M J, Chen L, Ma C C, Yang L. Mechanical optimization of a novel hollow traveling wave rotary ultrasonic motor. Journal of Intelligent Material Systems and Structures, 2020, 31(8): 1091–1100
CrossRef
Google scholar
|
[151] |
Uchino K. Piezoelectric actuators 2006. Journal of Electroceramics, 2008, 20(3–4): 301–311
CrossRef
Google scholar
|
[152] |
Pan Z Y, Wang L, Yang Y, Jin J M, Qiu J M. A novel bonded-type 3-degree-of-freedom ultrasonic motor: design, simulation, and experimental investigation. Smart Materials and Structures, 2023, 32(6): 065010
CrossRef
Google scholar
|
[153] |
Leng J W, Jin L, Dong X X, Zhang H B, Liu C L, Xu Z K. A multi-degree-of-freedom clamping type traveling-wave ultrasonic motor. Ultrasonics, 2022, 119: 106621
CrossRef
Google scholar
|
[154] |
Sun D, Tang Y J, Wang J, Wang X J. A novel fixable cylindrical ultrasonic motor. Advances in Mechanical Engineering, 2019, 11(3): 1–7
CrossRef
Google scholar
|
[155] |
Liu J, Niu Z J, Zhu H, Zhao C S. Design and experiment of a large-aperture hollow traveling wave ultrasonic motor with low speed and high torque. Applied Sciences, 2019, 9(19): 3979
CrossRef
Google scholar
|
[156] |
Niu R K, Liu J, Zhu H, Zhao C S. Design and evaluation of a novel light arc-shaped ultrasonic motor. AIP Advances, 2019, 9(6): 065009
CrossRef
Google scholar
|
[157] |
Chen Y, Liu Q L, Zhou T Y. A traveling wave ultrasonic motor of high torque. Ultrasonics, 2006, 44: e581–e584
CrossRef
Google scholar
|
[158] |
Cai J N, Chen F X, Sun L N, Dong W. Design of a linear walking stage based on two types of piezoelectric actuators. Sensors and Actuators A: Physical, 2021, 332: 112067
CrossRef
Google scholar
|
[159] |
PanC L, Zhang T, DaiT L, HanL L, XiaH J, YuL D. Design and simulation of a 2-DOF parallel linear precision platform utilizing piezoelectric impact drive mechanism. In: Proceedings of the 10th International Symposium on Precision Engineering Measurements and Instrumentation. Kunming: SPIE, 2019, 110534B
|
[160] |
BreguetJ M, Clavel R. Stick and slip actuators: design, control, performances and applications. In: Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. Creation of New Industry (Cat. No. 98TH8388). Nagoya: IEEE, 1998, 89–95
|
[161] |
Li J P, Huang H, Morita T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sensors and Actuators A: Physical, 2019, 292: 39–51
CrossRef
Google scholar
|
[162] |
LiuW H, Wang Y, HuangW Q, DingQ J. A linear stepping piezoelectric motor using inertial impact driving. Applied Mechanics and Materials, 2012, 226–228: 693–696
|
[163] |
Pan Q S, He L G, Pan C L, Xiao G J, Feng Z H. Resonant-type inertia linear motor based on the harmonic vibration synthesis of piezoelectric bending actuator. Sensors and Actuators A: Physical, 2014, 209: 169–174
CrossRef
Google scholar
|
[164] |
JiangN, Liu J B, TaoT, HanL. Motion characteristics of a rotary piezo impact drive mechanism. In: Proceedings of International Conference on Smart Materials and Nanotechnology in Engineering. Harbin: SPIE, 2007, 642324
|
[165] |
HuaS M, Cheng G M, ZhangZ Y, ZengP. Precise impact drive mechanism based on asymmetrically clamped piezoelectric actuator. Applied Mechanics and Materials, 2010, 37–38: 870–874
|
[166] |
Wen J M, Ma J J, Zeng P, Cheng G M, Zhang Z H. A new inertial piezoelectric rotary actuator based on changing the normal pressure. Microsystem Technologies, 2013, 19(2): 277–283
CrossRef
Google scholar
|
[167] |
Yamagata Y, Higuchi T, Saeki H, Ishimaru H. Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements. Journal of Vacuum Science & Technology A, 1990, 8(6): 4098–4100
CrossRef
Google scholar
|
[168] |
HiguchiT. Micro actuators using recoil of an ejected mass. IEEE Micro Robot and Teleoperators Workshop Proceedings, 1987, 16–21
|
[169] |
Yokozawa H, Morita T. Wireguide driving actuator using resonant-type smooth impact drive mechanism. Sensors and Actuators A: Physical, 2015, 230: 40–44
CrossRef
Google scholar
|
[170] |
Peng Y X, Liu L, Zhang Y K, Cao J, Cheng Y, Wang J. A smooth impact drive mechanism actuation method for flapping wing mechanism of bio-inspired micro air vehicles. Microsystem Technologies, 2018, 24(2): 935–941
CrossRef
Google scholar
|
[171] |
Park M H, Chong H H, Lee B H, Jeong S S, Park T G. Study on the new type of piezoelectric actuator utilizing smooth impact drive mechanism. Ferroelectrics, 2016, 500: 218–228
CrossRef
Google scholar
|
[172] |
Morita T, Yoshida R, Okamoto Y, Kurosawa M K, Higuchi T. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(6): 1439–1445
CrossRef
Google scholar
|
[173] |
Yoshida R, Okamoto Y, Higuchi T, Hamamatsu A. Development of smooth impact drive mechanism (SIDM). Journal of the Japan Society for Precision Engineering, 1999, 65(1): 111–115
CrossRef
Google scholar
|
[174] |
Deng J, Liu S H, Liu Y X, Wang L, Gao X, Li K. A 2-DOF needle insertion device using inertial piezoelectric actuator. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3918–3927
CrossRef
Google scholar
|
[175] |
Lee J, Kwon W S, Kim K S, Kim S. A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system. Review of Scientific Instruments, 2011, 82(8): 085105
CrossRef
Google scholar
|
[176] |
Mazeika D, Vasiljev P, Borodinas S, Bareikis R, Yang Y. Small size piezoelectric impact drive actuator with rectangular bimorphs. Sensors and Actuators A: Physical, 2018, 280: 76–84
CrossRef
Google scholar
|
[177] |
Hunstig M, Hemsel T, Sextro W. Stick–slip and slip–slip operation of piezoelectric inertia drives—Part II: frequency-limited excitation. Sensors and Actuators A: Physical, 2013, 200: 79–89
CrossRef
Google scholar
|
[178] |
Hunstig M, Hemsel T, Sextro W. Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: ideal excitation. Sensors and Actuators A: Physical, 2013, 200: 90–100
CrossRef
Google scholar
|
[179] |
Cheng T H, Lu X H, Zhao H W, Chen D, He P, Wang L, Zhao X L. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction. Review of Scientific Instruments, 2016, 87(8): 085007
CrossRef
Google scholar
|
[180] |
Li H Y, Li Y K, Cheng T H, Lu X H, Zhao H W, Gao H B. A symmetrical hybrid driving waveform for a linear piezoelectric stick–slip actuator. IEEE Access, 2017, 5: 16885–16894
CrossRef
Google scholar
|
[181] |
Fan H Y, Tang J Y, Li T, Yang X F, Liu J H, Guo W X, Huang H. Active suppression of the backward motion in a parasitic motion principle (PMP) piezoelectric actuator. Smart Materials and Structures, 2019, 28(12): 125006
CrossRef
Google scholar
|
[182] |
Deng J, Liu Y X, Li J, Zhang S J, Li K. Displacement linearity improving method of stepping piezoelectric platform based on leg wagging mechanism. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6429–6432
CrossRef
Google scholar
|
[183] |
Huang X, Hu Y L, Ma J J, Li J P, Lin H, Wen J M. An inertial piezoelectric rotary actuator based on active friction regulation using magnetic force. Smart Materials and Structures, 2021, 30(9): 095014
CrossRef
Google scholar
|
[184] |
KohJ S, Cho K J. Omegabot: biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM). In: Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin: IEEE, 2009, 1154–1159
|
[185] |
Ma L, Xiao J T, Zhou S S, Sun L N. A piezoelectric inchworm actuator of linear type using symmetrical lever amplification. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229(4): 172–179
CrossRef
Google scholar
|
[186] |
Peng Y X, Peng Y L, Gu X Y, Wang J, Yu H Y. A review of long range piezoelectric motors using frequency leveraged method. Sensors and Actuators A: Physical, 2015, 235: 240–255
CrossRef
Google scholar
|
[187] |
StibitzG R. Incremental feed mechanisms. US Patent, 3138749, 1964-6-23
|
[188] |
DouglasB A. Position control device. US Patent, 3377489A, 1968-4-9
|
[189] |
LiJ P, Wen J M, HuY L, ZhangZ H, HeL D, WanN. Principle, design and future of inchworm type piezoelectric actuators. In: Huang H, Li J P, eds. Piezoelectric Actuators. Rijeka: IntechOpen, 2021
|
[190] |
HsuS KAlbert B. Transducer. US Patent, 3292019, 1966-12-13
|
[191] |
FujimotoT. Linear motor driving device. US Patent, 4736131, 1988-4-5
|
[192] |
Kim Y W, Choi S C, Park J W, Jung Y H, Lee D W. The characteristics of variable speed inchworm stage using lever mechanism by different materials. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 5696–5701
CrossRef
Google scholar
|
[193] |
Wang S P, Rong W B, Wang L F, Pei Z C, Sun L N. A novel inchworm type piezoelectric rotary actuator with large output torque: design, analysis and experimental performance. Precision Engineering, 2018, 51: 545–551
CrossRef
Google scholar
|
[194] |
Oh C H, Choi J H, Nam H J, Bu J U, Kim S H. Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor. Sensors and Actuators A: Physical, 2010, 158(2): 306–312
CrossRef
Google scholar
|
[195] |
Tian X Q, Quan Q Q, Wang L, Su Q. An inchworm type piezoelectric actuator working in resonant state. IEEE Access, 2018, 6: 18975–18983
CrossRef
Google scholar
|
[196] |
Ma X F, Liu Y X, Deng J, Gao X, Cheng J F. A compact inchworm piezoelectric actuator with high speed: design, modeling, and experimental evaluation. Mechanical Systems and Signal Processing, 2023, 184: 109704
CrossRef
Google scholar
|
[197] |
Li J P, Zhao H W, Qu X T, Qu H, Zhou X Q, Fan Z Q, Ma Z C, Fu H S. Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle. Sensors and Actuators A: Physical, 2015, 222: 87–95
CrossRef
Google scholar
|
[198] |
Wang Y, Yan P. A novel bidirectional complementary-type inchworm actuator with parasitic motion based clamping. Mechanical Systems and Signal Processing, 2019, 134: 106360
CrossRef
Google scholar
|
[199] |
Toda R, Yang E H. A normally latched, large-stroke, inchworm microactuator. Journal of Micromechanics and Microengineering, 2007, 17(8): 1715
CrossRef
Google scholar
|
[200] |
Galante T, Frank J, Bernard J, Chen W, Lesieutre G A, Koopmann G H. Design, modeling, and performance of a high force piezoelectric inchworm motor. Journal of Intelligent Material Systems and Structures, 1999, 10(12): 962–972
CrossRef
Google scholar
|
[201] |
Li J P, He L D, Cai J J, Hu Y L, Wen J M, Ma J J, Wan W. A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks. Smart Materials and Structures, 2021, 30(8): 085030
CrossRef
Google scholar
|
[202] |
Kang D, Kim J, Lee M G, Gweon D. Development of compact high precision two degree of freedom XY piezoelectric stepping positioner. Review of Scientific Instruments, 2008, 79(2): 026110
CrossRef
Google scholar
|
[203] |
Fuchiwaki O, Arafuka K, Omura S. Development of 3-DOF inchworm mechanism for flexible, compact, low-inertia, and omnidirectional precise positioning: dynamical analysis and improvement of the maximum velocity within no slip of electromagnets. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 697–708
CrossRef
Google scholar
|
[204] |
Tahmasebipour M, Sangchap M. A novel high performance integrated two-axis inchworm piezoelectric motor. Smart Materials and Structures, 2020, 29(1): 015034
CrossRef
Google scholar
|
[205] |
Ma X F, Liu Y X, Deng J, Zhang S J, Liu J K. A walker-pusher inchworm actuator driven by two piezoelectric stacks. Mechanical Systems and Signal Processing, 2022, 169: 108636
CrossRef
Google scholar
|
[206] |
PiezoDrive. Specifications of actuators. Available at PiezoDrive website, 2023-5-30
|
[207] |
APCInternational Ltd. Specifications of actuators. Available at APC International Ltd. website, 2023-5-30
|
[208] |
PhysikInstrumente. Specifications of P-series actuators. Available at Physik Instrumente (PI) GmbH & Co. website, 2023-5-30
|
[209] |
Noliac. Specifications of actuators. Avialable at CTS Corporation website, 2023-5-30
|
[210] |
COREMORROW. Technical data of PSt series actuators. Available at Harbin Core Tomorrow Science and Technology Co., Ltd. website, 2023-5-30
|
[211] |
PiezoInc. Piezoelectric actuators & motors. Available at Piezo website, 2023-5-30
|
Abbreviations | |
DOF | Degree of freedom |
HAM | Hybrid-type amplification mechanism |
IDA | Inertia/impact drive actuator |
LAM | Lever-type amplification mechanism |
PI | Physik Instrumente |
PID | Proportional integral derivative |
PMUT | Piezoelectric micromachined ultrasound transducer |
PSA | Piezoelectric stack actuator |
PVDF | Polyvinylidene fluoride |
PZT | Piezoelectric lead zirconate titanate |
RAINBOW | Reduced and internally biased oxide wafer |
S–R | Scott–Russell |
SSDA | Stick–slip drive actuator |
SWM | Standing wave motor |
TAM | Triangular-type amplification mechanism |
TWM | Traveling wave motor |
THUNDER | Thin layer unimorph driver |
Variables | |
A | Amplitude of the standing wave |
d15, d31, d33 | Piezoelectric coupling coefficients |
Di | Electrical displacement |
h | Height of the single layer of piezoelectric material |
k | Wavenumber whose value is equal to 2π/λ |
k33 | Electromechanical coupling factor |
l | Length of the single layer of piezoelectric material |
L | Output displacement |
t | Time |
Tc | Curie temperature |
U | Voltage applied to the external electrodes |
x | Coordinate of a certain position on the elastic body |
ω | Angular frequency |
λ | Wavelength of the standing wave |
/
〈 | 〉 |