Review on piezoelectric actuators: materials, classifications, applications, and recent trends

Xuyang ZHOU , Shuang WU , Xiaoxu WANG , Zhenshan WANG , Qixuan ZHU , Jinshuai SUN , Panfeng HUANG , Xuewen WANG , Wei HUANG , Qianbo LU

Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (1) : 6

PDF (7865KB)
Front. Mech. Eng. ›› 2024, Vol. 19 ›› Issue (1) : 6 DOI: 10.1007/s11465-023-0772-0
REVIEW ARTICLE

Review on piezoelectric actuators: materials, classifications, applications, and recent trends

Author information +
History +
PDF (7865KB)

Abstract

Piezoelectric actuators are a class of actuators that precisely transfer input electric energy into displacement, force, or movement outputs efficiently via inverse piezoelectric effect-based electromechanical coupling. Various types of piezoelectric actuators have sprung up and gained widespread use in various applications in terms of compelling attributes, such as high precision, flexibility of stoke, immunity to electromagnetic interference, and structural scalability. This paper systematically reviews the piezoelectric materials, operating principles, representative schemes, characteristics, and potential applications of each mainstream type of piezoelectric actuator. Herein, we intend to provide a more scientific and nuanced perspective to classify piezoelectric actuators into direct and indirect categories with several subcategories. In addition, this review outlines the pros and cons and the future development trends for all kinds of piezoelectric actuators by exploring the relations and mechanisms behind them. The rich content and detailed comparison can help build an in-depth and holistic understanding of piezoelectric actuators and pave the way for future research and the selection of practical applications.

Graphical abstract

Keywords

piezoelectric actuator / piezoelectric effect / amplified piezoelectric actuator / ultrasonic actuator / stepping actuator / piezoelectric polymer

Cite this article

Download citation ▾
Xuyang ZHOU, Shuang WU, Xiaoxu WANG, Zhenshan WANG, Qixuan ZHU, Jinshuai SUN, Panfeng HUANG, Xuewen WANG, Wei HUANG, Qianbo LU. Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Front. Mech. Eng., 2024, 19(1): 6 DOI:10.1007/s11465-023-0772-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar D, Daudpoto J, Chowdhry B S. Challenges for practical applications of shape memory alloy actuators. Materials Research Express, 2020, 7(7): 073001

[2]

Gao C D, Zeng Z H, Peng S P, Shuai C J. Magnetostrictive alloys: promising materials for biomedical applications. Bioactive Materials, 2022, 8: 177–195

[3]

Ceyssens F, Sadeghpour S, Fujita H, Puers R. Actuators: accomplishments, opportunities and challenges. Sensors and Actuators A: Physical, 2019, 295: 604–611

[4]

Yuan Q, Kato B, Fan K Q, Wang Y. Phased array guided wave propagation in curved plates. Mechanical Systems and Signal Processing, 2023, 185: 109821

[5]

UchinoK. Advanced Piezoelectric Materials: Science and Technology. 2nd ed. Cambridge: Woodhead Publishing Ltd., 2017

[6]

HeywangW, Lubitz K, WersingW. Piezoelectricity: Evolution and Future of a Technology. Heidelberg: Springer, 2008

[7]

Yang C, Youcef-Toumi K. Principle, implementation, and applications of charge control for piezo-actuated nanopositioners: a comprehensive review. Mechanical Systems and Signal Processing, 2022, 171: 108885

[8]

Wang S P, Rong W, Wang L F, Xie H, Sun L, Mills J K. A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing, 2019, 123: 591–605

[9]

Mohith S, Upadhya A R, Navin K P, Kulkarni S M, Rao M. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Materials and Structures, 2021, 30(1): 013002

[10]

Zhang Z M, An Q, Li J M, Zhang W J. Piezoelectric friction–inertia actuator—a critical review and future perspective. The International Journal of Advanced Manufacturing Technology, 2012, 62(5–8): 669–685

[11]

Jeon J, Han C, Han Y M, Choi S B. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool. Smart Materials and Structures, 2014, 23(7): 075002

[12]

Xuan Z F, Jin T, Ha N S, Goo N S, Kim T H, Bae B W, Ko H S, Yoon K W. Performance of piezo-stacks for a piezoelectric hybrid actuator by experiments. Journal of Intelligent Material Systems and Structures, 2014, 25(18): 2212–2220

[13]

Chen F X, Zhang Q J, Gao Y Z, Dong W. A review on the flexure-based displacement amplification mechanisms. IEEE Access, 2020, 8: 205919–205937

[14]

Xu Q S, Li Y M. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mechanism and Machine Theory, 2011, 46(2): 183–200

[15]

Ding Y, Lai L J. Design and analysis of a displacement amplifier with high load capacity by combining bridge-type and Scott–Russell mechanisms. Review of Scientific Instruments, 2019, 90(6): 065102

[16]

Dong W, Chen F X, Gao F T, Yang M, Sun L N, Du Z J, Tang J, Zhang D. Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges. Precision Engineering, 2018, 54: 171–181

[17]

Spanner K, Koc B. Piezoelectric motors, an overview. Actuators, 2016, 5(1): 6

[18]

Hunstig M. Piezoelectric inertia motors—a critical review of history, concepts, design, applications, and perspectives. Actuators, 2017, 6(1): 7

[19]

Tian X Q, Liu Y X, Deng J, Wang L, Chen W S. A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives. Sensors and Actuators A: Physical, 2020, 306: 111971

[20]

MeitzlerA H, Berlincourt D, WelshF S, TierstenH F, CoquinG A, WarnerW A. IEEE Standard on Piezoelectricity. ANSI/IEEE, 198710.1109/IEEESTD.1988.79638

[21]

VoigtW. Crystal Physics Textbook. Leipzig and Berlin: B. G. Teubner, 1910

[22]

CadyW G. Piezoelectricity: An Introduction to the Theory and Applications of Electromechancial Phenomena in Crystals. New York: McGraw-Hill Book Company, Inc., 1946

[23]

HeisingR A. Quartz Crystals for Electrical Circuits, Their Design and Manufacture. New York: D. Van Nostrand Company, Inc., 1946

[24]

MasonW. Hysteresis Losses in Solid Materials, Piezoelectric Crystals and Their Application in Ultrasonics. New York: Van Nostrand, 1950

[25]

MindlinR D. On the equations of motion of piezoelectric crystals. In: Problems of Continuum Mechanics. Philadelphia: SIAM, 1989, 282‒290

[26]

Tiersten H F, Mindlin R D. Forced vibrations of piezoelectric crystal plates. Quarterly of Applied Mathematics, 1962, 20: 107–119

[27]

TierstenH F. Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates. New York: Springer, 2013

[28]

YangJ S. An Introduction to the Theory of Piezoelectricity. Cham: Springer, 2005

[29]

VisintinA. Differential Models of Hysteresis. Heidelberg: Springer, 1994

[30]

Clayton G M, Tien S, Leang K K, Zou Q Z, Devasia S. A review of feedforward control approaches in nanopositioning for high-speed SPM. Journal of Dynamic Systems, Measurement, and Control, 2009, 131(6): 061101

[31]

Sabarianand D V, Karthikeyan P, Muthuramalingam T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mechanical Systems and Signal Processing, 2020, 140: 106634

[32]

Xu Q S. Adaptive integral terminal third-order finite-time sliding-mode strategy for robust nanopositioning control. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6161–6170

[33]

Ling J, Feng Z, Zheng D D, Yang J, Yu H Y, Xiao X H. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mechanical Systems and Signal Processing, 2021, 150: 107235

[34]

Qiu Z C, Chen G H, Zhang X M. Trajectory planning and vibration control of translation flexible hinged plate based on optimization and reinforcement learning algorithm. Mechanical Systems and Signal Processing, 2022, 179: 109362

[35]

Turner B L, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele M A. Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Advanced Healthcare Materials, 2021, 10(17): 2100986

[36]

VijayaM S. Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences. Boca Raton: CRC Press, 2012

[37]

LuanG D, Zhang J D, WangR Q. Piezoelectric Transducers and Arrays. Revised ed. Beijing: Peking University Press, 2005 (in Chinese)

[38]

LindonJ C, Tranter G E, KoppenaalD W. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed. Academic Press, 2017

[39]

Newnham R E, Cross L E. Ferroelectricity: the foundation of a field from form to function. MRS Bulletin, 2005, 30(11): 845–848

[40]

Zhang R, Jiang B, Cao W W, Amin A. Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal. Journal of Materials Science Letters, 2002, 21(23): 1877–1879

[41]

Guo Y P, Luo H S, He T H, Pan X M, Yin Z W. Electric-field-induced strain and piezoelectric properties of a high curie temperature Pb(In1/2Nb1/2)O3-PbTiO3 single crystal. Materials Research Bulletin, 2003, 38(5): 857–864

[42]

Park S E, Shrout T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82(4): 1804–1811

[43]

Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S J. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264–268

[44]

NguyenC H. Interdigital-electrode thin-film piezoelectric microactuators. Dissertation for the Doctoral Degree. Borre: University of South-Eastern Norway, 2018

[45]

Zhang W, Xiong R G. Ferroelectric metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1163–1195

[46]

Cross L E, Newnham R E. History of ferroelectrics. Ceramics and Civilization, 1987, 3: 289–305

[47]

Liu Y, Cai Y, Zhang Y, Tovstopyat A, Liu S, Sun C L. Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines, 2020, 11(7): 630

[48]

BerlincourtD A, CurranD R, JaffeH. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics: Principles and Methods, 1964: 169–270

[49]

Sawaguchi E. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. Journal of the Physical Society of Japan, 1953, 8(5): 615–629

[50]

Jaffe B, Roth R S, Marzullo S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 1954, 25(6): 809–810

[51]

Li J L, Qu W B, Daniels J, Wu H J, Liu L J, Wu J, Wang M W, Checchia S, Yang S, Lei H B, Lv R, Zhang Y, Wang D Y, Li X X, Ding X D, Sun J, Xu Z, Chang Y F, Zhang S J, Li F. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87–93

[52]

Mahapatra S D, Mohapatra P C, Aria A I, Christie G, Mishra Y K, Hofmann S, Thakur V K. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Advancement of Science, 2021, 8(17): 2100864

[53]

Ramadan K S, Sameoto D, Evoy S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 2014, 23(3): 033001

[54]

HarrisonJ S, Ounaies Z. Polymers, piezoelectric. In: Schwartz M, ed. Encyclopedia of Smart Materials. John Wiley & Sons, 2002

[55]

JonesG D, Assink R A, DargavilleT R, ChaplyaP M, CloughR L, ElliottJ M, Martin J W, MoweryD M, CelinaM C. Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts. Technical Report SAND2005-6846, 2005

[56]

Chen Q X, Payne P A. Industrial applications of piezoelectric polymer transducers. Measurement Science & Technology, 1995, 6(3): 249

[57]

KimJ Y H, Cheng A, TaiY C. Parylene-C as a piezoelectric material. In: Proceedings of 2011 IEEE the 24th International Conference on Micro Electro Mechanical Systems. Cancun: IEEE, 2011, 473–476

[58]

Park C, Ounaies Z, Wise K E, Harrison J S. In situ poling and imidization of amorphous piezoelectric polyimides. Polymer, 2004, 45(16): 5417–5425

[59]

AtkinsonG M, Pearson R E, OunaiesZ, ParkC, Harrison J S, DoganS, MidkiffJ A. Novel piezoelectric polyimide MEMS. In: Proceedings of TRANSDUCERS’03. The 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664). Boston: IEEE, 2003, 782–785

[60]

Park K I, Lee M, Liu Y, Moon S, Hwang G T, Zhu G, Kim J E, Kim S O, Kim D K, Wang Z L, Lee K J. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Advanced Materials, 2012, 24(22): 2999–3004

[61]

Prashanthi K, Miriyala N, Gaikwad R D, Moussa W, Rao V R, Thundat T. Vibtrational energy harvesting using photo-patternable piezoelectric nanocomposite cantilevers. Nano Energy, 2013, 2(5): 923–932

[62]

Newnham R E, Skinner D P, Cross L E. Connectivity and piezoelectric−pyroelectric composites. Materials Research Bulletin, 1978, 13(5): 525–536

[63]

Sessler G M, West J E. Self-biased condenser microphone with high capacitance. The Journal of the Acoustical Society of America, 1962, 34(11): 1787–1788

[64]

Mohebbi A, Mighri F, Ajji A, Rodrigue D. Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis. Polymers for Advanced Technologies, 2017, 28(4): 476–483

[65]

Fang P, Wegener M, Wirges W, Gerhard R, Zirkel L. Cellular polyethylene-naphthalate ferroelectrets: foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Applied Physics Letters, 2007, 90(19): 192908

[66]

Nakayama M, Uenaka Y, Kataoka S, Oda Y, Yamamoto K, Tajitsu Y. Piezoelectricity of ferroelectret porous polyethylene thin film. Japanese Journal of Applied Physics, 2009, 48(9S1): 09KE05

[67]

Kang L H, Han J H. Prediction of actuation displacement and the force of a pre-stressed piezoelectric unimorph (PUMPS) considering nonlinear piezoelectric coefficient and elastic modulus. Smart Materials and Structures, 2010, 19(9): 094006

[68]

Zhu Y P, Liu W J, Jia K M, Liao W J, Xie H K. A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift. Sensors and Actuators A: Physical, 2011, 167(2): 495–501

[69]

Bakhtiari-Shahri M, Moeenfard H. Energy harvesting from unimorph piezoelectric circular plates under random acoustic and base acceleration excitations. Mechanical Systems and Signal Processing, 2019, 130: 502–523

[70]

Gao X Y, Yang J K, Wu J G, Xin X D, Li Z M, Yuan X T, Shen X Y, Dong S X. Piezoelectric actuators and motors: materials, designs, and applications. Advanced Materials Technologies, 2020, 5(1): 1900716

[71]

Yao L Q, Zhang J G, Lu L, Lai M O. Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field. Sensors and Actuators A: Physical, 2004, 115(1): 168–175

[72]

Wang Q M, Zhang Q M, Xu B M, Liu R B, Cross L E. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. Journal of Applied Physics, 1999, 86(6): 3352–3360

[73]

TaleghaniB K. Validation of high displacement piezoelectric actuator finite element models. In: Proceedings of proceedings of the Fifth European Conference on Smart Structures and Materials. Glasgow: SPIE, 2000, 17–45

[74]

Heo S, Wiguna T, Park H C, Goo N S. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of Bionics Engineering, 2007, 4(3): 151–158

[75]

Maaspuro M. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—a review. Microelectronics Reliability, 2016, 63: 342–353

[76]

Lee D O, Kang L H, Han J H. Active vibration isolation demonstration system using the piezoelectric unimorph with mechanically pre-stressed substrate. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1399–1409

[77]

Zhang S J, Zhao H F, Ma X F, Deng J, Liu Y X. A 3-DOF piezoelectric micromanipulator based on symmetric and antisymmetric bending of a cross-shaped beam. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8264–8275

[78]

Zhou X X, Li K, Liu Y X, Sun J H, Li H Y, Chen W S, Deng J. Development of an antihydropressure miniature underwater robot with multilocomotion mode using piezoelectric pulsed-jet actuator. IEEE Transactions on Industrial Electronics, 2023, 70(5): 5044–5054

[79]

Haertling G H. Rainbow ceramics: a new type of ultra-high-displacement actuator. American Ceramic Society Bulletin, 1994, 73(1): 93–96

[80]

HellbaumR F, Bryant R G, FoxR L, AntonyN J Jr, Rohrbach W W, SimpsonJ O. Thin layer composite unimorph ferroelectric driver and sensor. US Patent 6734603 B2, 2004-5-11

[81]

Wise S A. Displacement properties of RAINBOW and THUNDER piezoelectric actuators. Sensors and Actuators A: Physical, 1998, 69(1): 33–38

[82]

MossiK M, Bishop R P. Characterization of different types of high-performance THUNDER actuators. In: Proceedings of Smart Structures and Materials 1999: Smart Materials Technologies. Newport Beach: SPIE, 1999, 43–52

[83]

Gunda A, Özkayar G, Tichem M, Ghatkesar M K. Proportional microvalve using a unimorph piezoelectric microactuator. Micromachines, 2020, 11(2): 130

[84]

Roy K, Lee J E Y, Lee C K. Thin-film PMUTs: a review of over 40 years of research. Microsystems & Nanoengineering, 2023, 9(1): 95

[85]

Ci P H, Zhang L, Liu G X, Dong S X. Large electrical manipulation of permittivity in BaTiO3 and Pb(Zr,Ti)O3 bimorph heterostructure. Applied Physics Letters, 2014, 105(7): 072903

[86]

UchinoK. Ferroelectric Devices. 2nd ed. Boca Raton: CRC Press, 2018

[87]

Rios S A, Fleming A J. A new electrical configuration for improving the range of piezoelectric bimorph benders. Sensors and Actuators A: Physical, 2015, 224: 106–110

[88]

Karpelson M, Wei G Y, Wood R J. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2012, 176: 78–89

[89]

Ali A, Pasha R A, Elahi H, Sheeraz M A, Bibi S, Hassan Z U, Eugeni M, Gaudenzi P. Investigation of deformation in bimorph piezoelectric actuator: analytical, numerical and experimental approach. Integrated Ferroelectrics, 2019, 201(1): 94–109

[90]

Ghosh B, Jain R K, Majumder S, Roy S S, Mukhopadhyay S. Experimental characterizations of bimorph piezoelectric actuator for robotic assembly. Journal of Intelligent Material Systems and Structures, 2017, 28(15): 2095–2109

[91]

Jain R K, Majumder S, Ghosh B, Saha S. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. Journal of Manufacturing Systems, 2015, 35: 76–91

[92]

HallA J, Riddick J C. Micro-electro-mechanical flapping wing technology for micro air vehicles. In: Proceedings of Bioinspiration, Biomimetics, and Bioreplication. San Diego: SPIE, 2012, 83390L

[93]

Hu J, Chen S, Wang L. A new insect-scale piezoelectric robot with asymmetric structure. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8194–8202

[94]

Liu Y Z, Hao Z W, Yu J X, Zhou X R, Lee P S, Sun Y, Mu Z C, Zeng F L. A high-performance soft actuator based on a poly (vinylidene fluoride) piezoelectric bimorph. Smart Materials and Structures, 2019, 28(5): 055011

[95]

Khan M U, Butt Z, Elahi H, Asghar W, Abbas Z, Shoaib M, Bashir M A. Deflection of coupled elasticity–electrostatic bimorph PVDF material: theoretical, FEM and experimental verification. Microsystem Technologies, 2019, 25(8): 3235–3242

[96]

Yuan Y H, Shyong Chow K, Du H J, Wang P H, Zhang M S, Yu S K, Liu B. A ZnO thin-film driven microcantilever for nanoscale actuation and sensing. International Journal of Smart and Nano Materials, 2013, 4(2): 128–141

[97]

Moradi-Dastjerdi R, Meguid S A, Rashahmadi S. Dynamic behavior of novel micro fuel pump using zinc oxide nanocomposite diaphragm. Sensors and Actuators A: Physical, 2019, 297: 111528

[98]

Ivan I A, Rakotondrabe M, Agnus J, Bourquin R, Chaillet N, Lutz P, Poncot J C, Duffait R, Bauer O. Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT mateirals for composite bimorph actuators. Reviews on Advanced Materials Science, 2010, 24(15–16): 1–9

[99]

Kulikov A, Blagov A, Marchenkov N, Targonsky A, Eliovich Y, Pisarevsky Y, Kovalchuk M. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: static and quasistatic modes. Sensors and Actuators A: Physical, 2019, 291: 68–74

[100]

Ho S T, Jan S J. A piezoelectric motor for precision positioning applications. Precision Engineering, 2016, 43: 285–293

[101]

Zhang Y, Zhang W J, Hesselbach J, Kerle H. Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Review of Scientific Instruments, 2006, 77(3): 035112

[102]

Tolliver L, Xu T B, Jiang X N. Finite element analysis of the piezoelectric stacked-HYBATS transducer. Smart Materials and Structures, 2013, 22(3): 035015

[103]

Sahoo B, Panda P K. Fabrication of simple and ring-type piezo actuators and their characterization. Smart Materials Research, 2012, 2012: 821847

[104]

Gao X Y, Xin X D, Wu J G, Chu Z Q, Dong S X. A multilayered-cylindrical piezoelectric shear actuator operating in shear (d15) mode. Applied Physics Letters, 2018, 112(15): 152902

[105]

Huang H H, Wang L F, Wu Y. Design and experimental research of a rotary micro-actuator based on a shearing piezoelectric stack. Micromachines, 2019, 10(2): 96

[106]

JiangX N, Rehrig P W, HackenbergerW S, SmithE, DongS X, ViehlandD, Moore J Jr, PatrickB. Advanced piezoelectric single crystal based actuators. In: Proceedings of Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics. San Diego: SPIE, 2005, 253–262

[107]

Liu R B, Wang Q M, Zhang Q M, Cross L E. Piezoelectric pseudo-shear mode actuator made by L-shape joint bonding. Journal of Materials Science Materials in Electronics, 1998, 9(6): 453–456

[108]

DeMiguel-Ramos M, Díaz-Durán B, Escolano J M, Barba M, Mirea T, Olivares J, Clement M, Iborra E. Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator. Sensors and Actuators B: Chemical, 2017, 239: 1282–1288

[109]

Claeyssen F, Letty R L, Barillot F, Sosnicki O. Amplified piezoelectric actuators: static & dynamic applications. Ferroelectrics, 2007, 351(1): 3–14

[110]

Chen F X, Gao Y Z, Dong W, Du Z J. Design and control of a passive compliant piezo-actuated micro-gripper with hybrid flexure hinges. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11168–11177

[111]

Dsouza R D, Navin K P, Theodoridis T, Sharma P. Design, fabrication and testing of a 2 DOF compliant flexural microgripper. Microsystem Technologies, 2018, 24(9): 3867–3883

[112]

Xu Q S. Design and smooth position/force switching control of a miniature gripper for automated microhandling. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1023–1032

[113]

Sun X T, Chen W H, Tian Y L, Fatikow S, Zhou R, Zhang J B, Mikczinski M. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation. Review of Scientific Instruments, 2013, 84(8): 085002

[114]

Tian Y L, Shirinzadeh B, Zhang D W, Alici G. Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mechanical Systems and Signal Processing, 2009, 23(3): 957–978

[115]

WuQ G, Yang D H, LiA H, ZhouG H, YangB T. Design and test of a novel cost-effective piezo driven actuator with a two-stage flexure amplifier for chopping mirrors. In: Proceedings of Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II. Amsterdam: SPIE, 2012, 84505G

[116]

Na T W, Choi J H, Jung J Y, Kim H G, Han J H, Park K C, Oh I K. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism. Smart Materials and Structures, 2016, 25(9): 095028

[117]

Chen F X, Du Z J, Yang M, Gao F T, Dong W, Zhang D. Design and analysis of a three-dimensional bridge-type mechanism based on the stiffness distribution. Precision Engineering, 2018, 51: 48–58

[118]

Juuti J, Kordás K, Lonnakko R, Moilanen V P, Leppävuori S. Mechanically amplified large displacement piezoelectric actuators. Sensors and Actuators A: Physical, 2005, 120(1): 225–231

[119]

Chen C M, Hsu Y C, Fung R F. System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator. Applied Mathematical Modelling, 2012, 36(6): 2788–2802

[120]

SashidaT, Kenjo T. An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993

[121]

ZhaoC S. Ultrasonic Motors: Technologies and Applications. Heidelberg: Springer, 2011

[122]

Izuhara S, Mashimo T. Design and characterization of a thin linear ultrasonic motor for miniature focus systems. Sensors and Actuators A: Physical, 2021, 329: 112797

[123]

Uchino K. Piezoelectric ultrasonic motors: overview. Smart Materials and Structures, 1998, 7(3): 273

[124]

UchinoK. Piezoelectric Actuators and Ultrasonic Motors. New York: Springer, 1996

[125]

Li S Y, Ou W C, Yang M, Guo C, Lu C Y, Hu J H. Temperature evaluation of traveling-wave ultrasonic motor considering interaction between temperature rise and motor parameters. Ultrasonics, 2015, 57: 159–166

[126]

Ryndzionek R, Sienkiewicz Ł. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors. Ultrasonics, 2021, 116: 106471

[127]

Ci P H, Liu G X, Chen Z J, Dong S X. A standing wave linear ultrasonic motor operating in face-diagonal-bending mode. Applied Physics Letters, 2013, 103(10): 102904

[128]

Wang L, Liu J K, Liu Y X, Tian X Q, Yan J P. A novel single-mode linear piezoelectric ultrasonic motor based on asymmetric structure. Ultrasonics, 2018, 89: 137–142

[129]

Liu Y X, Shi S J, Li C H, Chen W S, Liu J K. A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode. Sensors and Actuators A: Physical, 2016, 251: 119–125

[130]

He S P, Shi S J, Zhang Y H, Chen W S. Design and experimental research on a deep-sea resonant linear ultrasonic motor. IEEE Access, 2018, 6: 57249–57256

[131]

Jian Y, Yao Z Y, Silberschmidt V V. Linear ultrasonic motor for absolute gravimeter. Ultrasonics, 2017, 77: 88–94

[132]

Yeh C H, Su F C, Shan Y S, Dosaev M, Selyutskiy Y, Goryacheva I, Ju M S. Application of piezoelectric actuator to simplified haptic feedback system. Sensors and Actuators A: Physical, 2020, 303: 111820

[133]

Zhang Q, Chen W S, Liu Y X, Liu J K, Jiang Q. A frog-shaped linear piezoelectric actuator using first-order longitudinal vibration mode. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2188–2195

[134]

Zhang B L, Yao Z Y, Liu Z, Li X N. A novel L-shaped linear ultrasonic motor operating in a single resonance mode. Review of Scientific Instruments, 2018, 89(1): 015006

[135]

Liu Y X, Chen W S, Liu J K, Shi S J. A cylindrical standing wave ultrasonic motor using bending vibration transducer. Ultrasonics, 2011, 51(5): 527–531

[136]

LiuJ K, Xie T, ChenW S, JiaC H. A standing wave ultrasonic motor using longitudinal vibration transducers. Key Engineering Materials, 2011, 474–476: 661–665

[137]

Dabbagh V, Sarhan A A D, Akbari J, Mardi N A. Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source. Precision Engineering, 2017, 48: 172–180

[138]

Fan P Q, Shu X C, Yuan T, Li C D. A novel high thrust–weight ratio linear ultrasonic motor driven by single-phase signal. Review of Scientific Instruments, 2018, 89(8): 085001

[139]

Yeh C H, Su F C, Shan Y S, Dosaev M, Selyutskiy Y, Goryacheva I, Ju M S. Application of piezoelectric actuator to simplified haptic feedback system. Sensors and Actuators A: Physical, 2020, 303: 111820

[140]

Peng T J, Wu X Y, Liang X, Shi H Y, Luo F. Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor. Ultrasonics, 2015, 61: 157–161

[141]

Doshida Y, Tamura H, Tanaka S. High-power properties of crystal-oriented (Sr,Ca)2NaNb5O15 piezoelectric ceramics and their application to ultrasonic motors. Japanese Journal of Applied Physics, 2019, 58(SG): SGGA07

[142]

Uchino K, Cagatay S, Koc B, Dong S, Bouchilloux P, Strauss M. Micro piezoelectric ultrasonic motors. Journal of Electroceramics, 2004, 13(1–3): 393–401

[143]

Zhou Y N, Chang J J, Liao X X, Feng Z H. Ring-shaped traveling wave ultrasonic motor for high-output power density with suspension stator. Ultrasonics, 2020, 102: 106040

[144]

Chen W S, Liu Y X, Yang X H, Liu J K. Ring-type traveling wave ultrasonic motor using a radial bending mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 197–202

[145]

Sun H Y, Yin H, Liu J, Zhang X L. Preload optimization method for traveling-wave rotary ultrasonic motor. Processes, 2021, 9(7): 1164

[146]

Jia B T, Wang L, Wang R F, Jin J M, Zhao Z H, Wu D W. A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation. Smart Materials and Structures, 2021, 30(3): 035016

[147]

Zhang J, Wang X Z. Design and experimental study of ultrasonic vibration feeding device with double symmetrical structure. IEEE Access, 2022, 10: 63481–63495

[148]

UchinoK. Piezoelectric motors for camera modules. In: Proceedings of International Conference on New Actuators. Bremen: International Center for Actuators and Transducers, 2008

[149]

Li Z, Wang Z, Guo P, Zhao L, Wang Q J. A ball-type multi-DOF ultrasonic motor with three embedded traveling wave stators. Sensors and Actuators A: Physical, 2020, 313: 112161

[150]

Ren W H, Yang M J, Chen L, Ma C C, Yang L. Mechanical optimization of a novel hollow traveling wave rotary ultrasonic motor. Journal of Intelligent Material Systems and Structures, 2020, 31(8): 1091–1100

[151]

Uchino K. Piezoelectric actuators 2006. Journal of Electroceramics, 2008, 20(3–4): 301–311

[152]

Pan Z Y, Wang L, Yang Y, Jin J M, Qiu J M. A novel bonded-type 3-degree-of-freedom ultrasonic motor: design, simulation, and experimental investigation. Smart Materials and Structures, 2023, 32(6): 065010

[153]

Leng J W, Jin L, Dong X X, Zhang H B, Liu C L, Xu Z K. A multi-degree-of-freedom clamping type traveling-wave ultrasonic motor. Ultrasonics, 2022, 119: 106621

[154]

Sun D, Tang Y J, Wang J, Wang X J. A novel fixable cylindrical ultrasonic motor. Advances in Mechanical Engineering, 2019, 11(3): 1–7

[155]

Liu J, Niu Z J, Zhu H, Zhao C S. Design and experiment of a large-aperture hollow traveling wave ultrasonic motor with low speed and high torque. Applied Sciences, 2019, 9(19): 3979

[156]

Niu R K, Liu J, Zhu H, Zhao C S. Design and evaluation of a novel light arc-shaped ultrasonic motor. AIP Advances, 2019, 9(6): 065009

[157]

Chen Y, Liu Q L, Zhou T Y. A traveling wave ultrasonic motor of high torque. Ultrasonics, 2006, 44: e581–e584

[158]

Cai J N, Chen F X, Sun L N, Dong W. Design of a linear walking stage based on two types of piezoelectric actuators. Sensors and Actuators A: Physical, 2021, 332: 112067

[159]

PanC L, Zhang T, DaiT L, HanL L, XiaH J, YuL D. Design and simulation of a 2-DOF parallel linear precision platform utilizing piezoelectric impact drive mechanism. In: Proceedings of the 10th International Symposium on Precision Engineering Measurements and Instrumentation. Kunming: SPIE, 2019, 110534B

[160]

BreguetJ M, Clavel R. Stick and slip actuators: design, control, performances and applications. In: Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. Creation of New Industry (Cat. No. 98TH8388). Nagoya: IEEE, 1998, 89–95

[161]

Li J P, Huang H, Morita T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sensors and Actuators A: Physical, 2019, 292: 39–51

[162]

LiuW H, Wang Y, HuangW Q, DingQ J. A linear stepping piezoelectric motor using inertial impact driving. Applied Mechanics and Materials, 2012, 226–228: 693–696

[163]

Pan Q S, He L G, Pan C L, Xiao G J, Feng Z H. Resonant-type inertia linear motor based on the harmonic vibration synthesis of piezoelectric bending actuator. Sensors and Actuators A: Physical, 2014, 209: 169–174

[164]

JiangN, Liu J B, TaoT, HanL. Motion characteristics of a rotary piezo impact drive mechanism. In: Proceedings of International Conference on Smart Materials and Nanotechnology in Engineering. Harbin: SPIE, 2007, 642324

[165]

HuaS M, Cheng G M, ZhangZ Y, ZengP. Precise impact drive mechanism based on asymmetrically clamped piezoelectric actuator. Applied Mechanics and Materials, 2010, 37–38: 870–874

[166]

Wen J M, Ma J J, Zeng P, Cheng G M, Zhang Z H. A new inertial piezoelectric rotary actuator based on changing the normal pressure. Microsystem Technologies, 2013, 19(2): 277–283

[167]

Yamagata Y, Higuchi T, Saeki H, Ishimaru H. Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements. Journal of Vacuum Science & Technology A, 1990, 8(6): 4098–4100

[168]

HiguchiT. Micro actuators using recoil of an ejected mass. IEEE Micro Robot and Teleoperators Workshop Proceedings, 1987, 16–21

[169]

Yokozawa H, Morita T. Wireguide driving actuator using resonant-type smooth impact drive mechanism. Sensors and Actuators A: Physical, 2015, 230: 40–44

[170]

Peng Y X, Liu L, Zhang Y K, Cao J, Cheng Y, Wang J. A smooth impact drive mechanism actuation method for flapping wing mechanism of bio-inspired micro air vehicles. Microsystem Technologies, 2018, 24(2): 935–941

[171]

Park M H, Chong H H, Lee B H, Jeong S S, Park T G. Study on the new type of piezoelectric actuator utilizing smooth impact drive mechanism. Ferroelectrics, 2016, 500: 218–228

[172]

Morita T, Yoshida R, Okamoto Y, Kurosawa M K, Higuchi T. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(6): 1439–1445

[173]

Yoshida R, Okamoto Y, Higuchi T, Hamamatsu A. Development of smooth impact drive mechanism (SIDM). Journal of the Japan Society for Precision Engineering, 1999, 65(1): 111–115

[174]

Deng J, Liu S H, Liu Y X, Wang L, Gao X, Li K. A 2-DOF needle insertion device using inertial piezoelectric actuator. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3918–3927

[175]

Lee J, Kwon W S, Kim K S, Kim S. A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system. Review of Scientific Instruments, 2011, 82(8): 085105

[176]

Mazeika D, Vasiljev P, Borodinas S, Bareikis R, Yang Y. Small size piezoelectric impact drive actuator with rectangular bimorphs. Sensors and Actuators A: Physical, 2018, 280: 76–84

[177]

Hunstig M, Hemsel T, Sextro W. Stick–slip and slip–slip operation of piezoelectric inertia drives—Part II: frequency-limited excitation. Sensors and Actuators A: Physical, 2013, 200: 79–89

[178]

Hunstig M, Hemsel T, Sextro W. Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: ideal excitation. Sensors and Actuators A: Physical, 2013, 200: 90–100

[179]

Cheng T H, Lu X H, Zhao H W, Chen D, He P, Wang L, Zhao X L. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction. Review of Scientific Instruments, 2016, 87(8): 085007

[180]

Li H Y, Li Y K, Cheng T H, Lu X H, Zhao H W, Gao H B. A symmetrical hybrid driving waveform for a linear piezoelectric stick–slip actuator. IEEE Access, 2017, 5: 16885–16894

[181]

Fan H Y, Tang J Y, Li T, Yang X F, Liu J H, Guo W X, Huang H. Active suppression of the backward motion in a parasitic motion principle (PMP) piezoelectric actuator. Smart Materials and Structures, 2019, 28(12): 125006

[182]

Deng J, Liu Y X, Li J, Zhang S J, Li K. Displacement linearity improving method of stepping piezoelectric platform based on leg wagging mechanism. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6429–6432

[183]

Huang X, Hu Y L, Ma J J, Li J P, Lin H, Wen J M. An inertial piezoelectric rotary actuator based on active friction regulation using magnetic force. Smart Materials and Structures, 2021, 30(9): 095014

[184]

KohJ S, Cho K J. Omegabot: biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM). In: Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin: IEEE, 2009, 1154–1159

[185]

Ma L, Xiao J T, Zhou S S, Sun L N. A piezoelectric inchworm actuator of linear type using symmetrical lever amplification. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229(4): 172–179

[186]

Peng Y X, Peng Y L, Gu X Y, Wang J, Yu H Y. A review of long range piezoelectric motors using frequency leveraged method. Sensors and Actuators A: Physical, 2015, 235: 240–255

[187]

StibitzG R. Incremental feed mechanisms. US Patent, 3138749, 1964-6-23

[188]

DouglasB A. Position control device. US Patent, 3377489A, 1968-4-9

[189]

LiJ P, Wen J M, HuY L, ZhangZ H, HeL D, WanN. Principle, design and future of inchworm type piezoelectric actuators. In: Huang H, Li J P, eds. Piezoelectric Actuators. Rijeka: IntechOpen, 2021

[190]

HsuS KAlbert B. Transducer. US Patent, 3292019, 1966-12-13

[191]

FujimotoT. Linear motor driving device. US Patent, 4736131, 1988-4-5

[192]

Kim Y W, Choi S C, Park J W, Jung Y H, Lee D W. The characteristics of variable speed inchworm stage using lever mechanism by different materials. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 5696–5701

[193]

Wang S P, Rong W B, Wang L F, Pei Z C, Sun L N. A novel inchworm type piezoelectric rotary actuator with large output torque: design, analysis and experimental performance. Precision Engineering, 2018, 51: 545–551

[194]

Oh C H, Choi J H, Nam H J, Bu J U, Kim S H. Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor. Sensors and Actuators A: Physical, 2010, 158(2): 306–312

[195]

Tian X Q, Quan Q Q, Wang L, Su Q. An inchworm type piezoelectric actuator working in resonant state. IEEE Access, 2018, 6: 18975–18983

[196]

Ma X F, Liu Y X, Deng J, Gao X, Cheng J F. A compact inchworm piezoelectric actuator with high speed: design, modeling, and experimental evaluation. Mechanical Systems and Signal Processing, 2023, 184: 109704

[197]

Li J P, Zhao H W, Qu X T, Qu H, Zhou X Q, Fan Z Q, Ma Z C, Fu H S. Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle. Sensors and Actuators A: Physical, 2015, 222: 87–95

[198]

Wang Y, Yan P. A novel bidirectional complementary-type inchworm actuator with parasitic motion based clamping. Mechanical Systems and Signal Processing, 2019, 134: 106360

[199]

Toda R, Yang E H. A normally latched, large-stroke, inchworm microactuator. Journal of Micromechanics and Microengineering, 2007, 17(8): 1715

[200]

Galante T, Frank J, Bernard J, Chen W, Lesieutre G A, Koopmann G H. Design, modeling, and performance of a high force piezoelectric inchworm motor. Journal of Intelligent Material Systems and Structures, 1999, 10(12): 962–972

[201]

Li J P, He L D, Cai J J, Hu Y L, Wen J M, Ma J J, Wan W. A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks. Smart Materials and Structures, 2021, 30(8): 085030

[202]

Kang D, Kim J, Lee M G, Gweon D. Development of compact high precision two degree of freedom XY piezoelectric stepping positioner. Review of Scientific Instruments, 2008, 79(2): 026110

[203]

Fuchiwaki O, Arafuka K, Omura S. Development of 3-DOF inchworm mechanism for flexible, compact, low-inertia, and omnidirectional precise positioning: dynamical analysis and improvement of the maximum velocity within no slip of electromagnets. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 697–708

[204]

Tahmasebipour M, Sangchap M. A novel high performance integrated two-axis inchworm piezoelectric motor. Smart Materials and Structures, 2020, 29(1): 015034

[205]

Ma X F, Liu Y X, Deng J, Zhang S J, Liu J K. A walker-pusher inchworm actuator driven by two piezoelectric stacks. Mechanical Systems and Signal Processing, 2022, 169: 108636

[206]

PiezoDrive. Specifications of actuators. Available at PiezoDrive website, 2023-5-30

[207]

APCInternational Ltd. Specifications of actuators. Available at APC International Ltd. website, 2023-5-30

[208]

PhysikInstrumente. Specifications of P-series actuators. Available at Physik Instrumente (PI) GmbH & Co. website, 2023-5-30

[209]

Noliac. Specifications of actuators. Avialable at CTS Corporation website, 2023-5-30

[210]

COREMORROW. Technical data of PSt series actuators. Available at Harbin Core Tomorrow Science and Technology Co., Ltd. website, 2023-5-30

[211]

PiezoInc. Piezoelectric actuators & motors. Available at Piezo website, 2023-5-30

RIGHTS & PERMISSIONS

The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (7865KB)

3299

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/