Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements

Abubakar M. SADIQ, Yuanqing GU, Yu LUO, Yan CHEN, Kaixue MA

PDF(22179 KB)
PDF(22179 KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (4) : 60. DOI: 10.1007/s11465-022-0716-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements

Author information +
History +

Abstract

In the artificial intelligence-driven modern wireless communication system, antennas are required to be reconfigurable in terms of size according to changing application scenarios. However, conventional antennas with constant phase distributions cannot achieve enhanced gains in different reconfigurable sizes. In this paper, we propose a mechanically reconfigurable radiation array (RRA) based on miniaturized elements and a mechanically reconfigurable system to obtain gain-enhanced antennas in compact and deployed states. A five-element RRA with a phase-reconfigurable center element is designed and analyzed theoretically. The experimental sample has been fabricated, driven by a deployable frame with only one degree of freedom to realize the size and phase distribution reconfiguration simultaneously to validate the enhanced gains of RRA. The proposed RRA can be tessellated into larger arrays to achieve higher gains in other frequency regimes, such as terahertz or photonics applications with nanometer fabrication technology.

Graphical abstract

Keywords

mechanism / reconfigurable radiation array (RRA) / compact state / deployed state / enhanced gain

Cite this article

Download citation ▾
Abubakar M. SADIQ, Yuanqing GU, Yu LUO, Yan CHEN, Kaixue MA. Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements. Front. Mech. Eng., 2022, 17(4): 60 https://doi.org/10.1007/s11465-022-0716-0

References

[1]
Christodoulou C G, Tawk Y, Lane S A, Erwin S R. Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 2012, 100(7): 2250–2261
CrossRef Google scholar
[2]
Costantine J, Tawk Y, Barbin S E, Christodoulou C G. Reconfigurable antennas: design and applications. Proceedings of the IEEE, 2015, 103(3): 424–437
CrossRef Google scholar
[3]
Wang Z L, Ge Y H, Pu J X, Chen X X, Li G W, Wang Y F, Liu K T, Zhang H, Chen Z Z. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6806–6810
CrossRef Google scholar
[4]
Nan J C, Zhao J Y, Gao M M, Yang W D, Wang M H, Xie H. A compact 8-states frequency reconfigurable UWB antenna. IEEE Access, 2021, 9: 144257–144263
CrossRef Google scholar
[5]
Ke Y H, Yang L L, Chen J X. Design of switchable dual-balun feeding structure for pattern-reconfigurable endfire antenna. IEEE Antennas and Wireless Propagation Letters, 2021, 20(8): 1463–1467
CrossRef Google scholar
[6]
won Jung C, Lee M J, Li G P, De Flaviis F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 455–463
CrossRef Google scholar
[7]
Cetiner B A, Crusats G R, Jofre L, Biyikli N. RF MEMS integrated frequency reconfigurable annular slot antenna. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 626–632
CrossRef Google scholar
[8]
Zohur A, Mopidevi H, Rodrigo D, Unlu M, Jofre L, Cetiner B A. RF MEMS reconfigurable two-band antenna. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 72–75
CrossRef Google scholar
[9]
Hu J, Yang X J, Ge L, Guo Z J, Hao Z C, Wong H. A reconfigurable 1×4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5124–5129
CrossRef Google scholar
[10]
Wang M N, Tang M, Zhang L P, Zhang H C, Xu J, Cui T J, Mao J F. Miniaturization of frequency-reconfigurable antenna using periodic slow-wave structure. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7889–7894
CrossRef Google scholar
[11]
Vellucci S, De Sibi D, Monti A, Barbuto M, Salucci G, M A, Oliveri A, Massa F. Multi layered coating metasurfaces enabling frequency reconfigurability in wire antenna. IEEE Open Journal of Antennas and Propagation, 2022, 3: 206–216
CrossRef Google scholar
[12]
Sayem A S M, Simorangkir R B, Esselle K P, Thalakotuna D N, Lalbakhsh A. An electronically-tunable, flexible, and transparent antenna with unidirectional radiation pattern. IEEE Access, 2021, 9: 147042–147053
CrossRef Google scholar
[13]
da Costa I F, Cerqueira S A, Spadoti D H, da Silva L G, Ribeiro J A J, Barbin S E. Optically controlled reconfigurable antenna array for mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2142–2145
CrossRef Google scholar
[14]
Tawk Y, Albrecht A R, Hemmady S, Balakrishnan G, Christodoulou C G. Optically pumped frequency reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 280–283
CrossRef Google scholar
[15]
Pendharker S, Shevgaonkar R K, Chandorkar A N. Optically controlled frequency-reconfigurable microstrip antenna with low photoconductivity. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 99–102
CrossRef Google scholar
[16]
Euler M, Fusco V F. Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability. IEEE Transactions on Antennas and Propagation, 2010, 58(10): 3417–3421
CrossRef Google scholar
[17]
Yang X, Xu S H, Yang F, Li M K, Fang H F, Hou Y Q, Jiang S D, Liu L. A mechanically reconfigurable reflectarray with slotted patches of tunable height. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 555–558
CrossRef Google scholar
[18]
Yang X, Xu S H, Yang F, Li M K, Hou Y Q, Jiang S D, Liu L. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959–3966
CrossRef Google scholar
[19]
Yao Y L, Zhang F S, Zhang F. A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2354–2364
CrossRef Google scholar
[20]
McMichael I T. A mechanically reconfigurable patch antenna with polarization diversity. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1186–1189
CrossRef Google scholar
[21]
Mei P, Zhang S, Pedersen G F. A wideband 3-D printed reflectarray antenna with mechanically reconfigurable polarization. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1798–1802
CrossRef Google scholar
[22]
Li P K, You C J, Yu H F, Cheng Y J. Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application. Microwave and Optical Technology Letters, 2017, 59(10): 2526–2531
CrossRef Google scholar
[23]
Jang T, Zhang C, Youn H, Zhou J, Guo L J. Semitransparent and flexible mechanically reconfigurable electrically small antennas based on tortuous metallic micromesh. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 150–158
CrossRef Google scholar
[24]
Mathur P, Madanan G, Raman S. Mechanically frequency reconfigurable antenna for WSN, WLAN, and LTE 2500 based internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(2): e22318
CrossRef Google scholar
[25]
Nassar I T, Tsang H, Bardroff D, Lusk C P, Weller T M. Mechanically reconfigurable, dual-band slot dipole antennas. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3267–3271
CrossRef Google scholar
[26]
Nauroze S A, Novelino L S, Tentzeris M M, Paulino G H. Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52): 13210–13215
CrossRef Google scholar
[27]
Zhu H L, Liu X H, Cheung S W, Yuk T I. Frequency-reconfigurable antenna using metasurface. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 80–85
CrossRef Google scholar
[28]
Chen T R, Lin Y S, Kuo L K, Row J S. Mechanically reconfigurable array with pattern and polarization diversity. Microwave and Optical Technology Letters, 2021, 63(2): 544–549
CrossRef Google scholar
[29]
Lee Y L, Wang P K, Chen T R, Row J S. A mechanically pattern reconfigurable array. Microwave and Optical Technology Letters, 2020, 62(3): 1386–1390
CrossRef Google scholar
[30]
Shah S I H, Bashir S, Ashfaq M, Altaf A, Rmili H. Lightweight and low-cost deployable origami antennas—a review. IEEE Access, 2021, 9: 86429–86448
CrossRef Google scholar
[31]
Chahat N, Hodges R E, Sauder J, Thomson M, Peral E, Rahmat-Samii Y. CubeSat deployable Ka-band mesh reflector antenna development for earth science missions. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2083–2093
CrossRef Google scholar
[32]
Rahmat-Samii Y, Manohar V, Kovitz J M, Hodges R E, Freebury G, Peral E. Development of highly constrained 1 m Ka-band mesh deployable offset reflector antenna for next generation CubeSat radars. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6254–6266
CrossRef Google scholar
[33]
Liu A K, Lu J. A UHF deployable log periodic dipole antenna: concept, design, and experiment. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 538–543
CrossRef Google scholar
[34]
Georgakopoulos S V, Zekios C L, Sattar-Kaddour A, Hamza M, Biswas A, Clark B, Ynchausti C, Howell L L, Magleby S P, Lang R J. Origami antennas. IEEE Open Journal of Antennas and Propagation, 2021, 2: 1020–1043
CrossRef Google scholar
[35]
Hwang M, Kim G, Kim S, Jeong N S. Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2697–2705
CrossRef Google scholar
[36]
Yao S, Liu X L, Georgakopoulos S V. Morphing origami conical spiral antenna based on the Nojima wrap. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2222–2232
CrossRef Google scholar
[37]
Liu X L, Yao S, Cook B S, Tentzeris M M, Georgakopoulos S V. An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5897–5903
CrossRef Google scholar
[38]
Yaru N. A note on super-gain antenna arrays. Proceedings of the IRE, 1951, 39(9): 1081–1085
CrossRef Google scholar
[39]
Hansen R C. Fundamental limitations in antennas. Proceedings of the IEEE, 1981, 69(2): 170–182
CrossRef Google scholar
[40]
Newman E, Schrote M. A wide-band electrically small superdirective array. IRE Transactions on Antennas and Propagation, 1982, 30(6): 1172–1176
CrossRef Google scholar
[41]
Zhang X, Zhu L. Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5702–5709
CrossRef Google scholar
[42]
Yagi H. Beam transmission of ultra short waves. Proceedings of the Institute of Radio Engineers, 1928, 16(6): 715–740
CrossRef Google scholar
[43]
Kullock R, Ochs M, Grimm P, Emmerling M, Hecht B. Electrically-driven Yagi-Uda antennas for light. Nature Communications, 2020, 11(1): 115
CrossRef Google scholar
[44]
Kramer O, Djerafi T, Wu K. Vertically multilayer-stacked Yagi antenna with single and dual polarizations. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1022–1030
CrossRef Google scholar
[45]
Yang Y F, You Z. Geometry of transformable metamaterials inspired by modular origami. Journal of Mechanisms and Robotics, 2018, 10(2): 021001
CrossRef Google scholar
[46]
Jin E, Lee I S, Kim D, Lee H, Jang W D, Lah M S, Min S K, Choe W. Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial. Science Advances, 2019, 5(5): eaav4119
CrossRef Google scholar

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61831017, 51825503, and 52035008).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(22179 KB)

Accesses

Citations

Detail

Sections
Recommended

/