Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements
Abubakar M. SADIQ, Yuanqing GU, Yu LUO, Yan CHEN, Kaixue MA
Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements
In the artificial intelligence-driven modern wireless communication system, antennas are required to be reconfigurable in terms of size according to changing application scenarios. However, conventional antennas with constant phase distributions cannot achieve enhanced gains in different reconfigurable sizes. In this paper, we propose a mechanically reconfigurable radiation array (RRA) based on miniaturized elements and a mechanically reconfigurable system to obtain gain-enhanced antennas in compact and deployed states. A five-element RRA with a phase-reconfigurable center element is designed and analyzed theoretically. The experimental sample has been fabricated, driven by a deployable frame with only one degree of freedom to realize the size and phase distribution reconfiguration simultaneously to validate the enhanced gains of RRA. The proposed RRA can be tessellated into larger arrays to achieve higher gains in other frequency regimes, such as terahertz or photonics applications with nanometer fabrication technology.
mechanism / reconfigurable radiation array (RRA) / compact state / deployed state / enhanced gain
[1] |
Christodoulou C G, Tawk Y, Lane S A, Erwin S R. Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 2012, 100(7): 2250–2261
CrossRef
Google scholar
|
[2] |
Costantine J, Tawk Y, Barbin S E, Christodoulou C G. Reconfigurable antennas: design and applications. Proceedings of the IEEE, 2015, 103(3): 424–437
CrossRef
Google scholar
|
[3] |
Wang Z L, Ge Y H, Pu J X, Chen X X, Li G W, Wang Y F, Liu K T, Zhang H, Chen Z Z. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6806–6810
CrossRef
Google scholar
|
[4] |
Nan J C, Zhao J Y, Gao M M, Yang W D, Wang M H, Xie H. A compact 8-states frequency reconfigurable UWB antenna. IEEE Access, 2021, 9: 144257–144263
CrossRef
Google scholar
|
[5] |
Ke Y H, Yang L L, Chen J X. Design of switchable dual-balun feeding structure for pattern-reconfigurable endfire antenna. IEEE Antennas and Wireless Propagation Letters, 2021, 20(8): 1463–1467
CrossRef
Google scholar
|
[6] |
won Jung C, Lee M J, Li G P, De Flaviis F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 455–463
CrossRef
Google scholar
|
[7] |
Cetiner B A, Crusats G R, Jofre L, Biyikli N. RF MEMS integrated frequency reconfigurable annular slot antenna. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 626–632
CrossRef
Google scholar
|
[8] |
Zohur A, Mopidevi H, Rodrigo D, Unlu M, Jofre L, Cetiner B A. RF MEMS reconfigurable two-band antenna. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 72–75
CrossRef
Google scholar
|
[9] |
Hu J, Yang X J, Ge L, Guo Z J, Hao Z C, Wong H. A reconfigurable 1×4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5124–5129
CrossRef
Google scholar
|
[10] |
Wang M N, Tang M, Zhang L P, Zhang H C, Xu J, Cui T J, Mao J F. Miniaturization of frequency-reconfigurable antenna using periodic slow-wave structure. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7889–7894
CrossRef
Google scholar
|
[11] |
Vellucci S, De Sibi D, Monti A, Barbuto M, Salucci G, M A, Oliveri A, Massa F. Multi layered coating metasurfaces enabling frequency reconfigurability in wire antenna. IEEE Open Journal of Antennas and Propagation, 2022, 3: 206–216
CrossRef
Google scholar
|
[12] |
Sayem A S M, Simorangkir R B, Esselle K P, Thalakotuna D N, Lalbakhsh A. An electronically-tunable, flexible, and transparent antenna with unidirectional radiation pattern. IEEE Access, 2021, 9: 147042–147053
CrossRef
Google scholar
|
[13] |
da Costa I F, Cerqueira S A, Spadoti D H, da Silva L G, Ribeiro J A J, Barbin S E. Optically controlled reconfigurable antenna array for mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2142–2145
CrossRef
Google scholar
|
[14] |
Tawk Y, Albrecht A R, Hemmady S, Balakrishnan G, Christodoulou C G. Optically pumped frequency reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 280–283
CrossRef
Google scholar
|
[15] |
Pendharker S, Shevgaonkar R K, Chandorkar A N. Optically controlled frequency-reconfigurable microstrip antenna with low photoconductivity. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 99–102
CrossRef
Google scholar
|
[16] |
Euler M, Fusco V F. Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability. IEEE Transactions on Antennas and Propagation, 2010, 58(10): 3417–3421
CrossRef
Google scholar
|
[17] |
Yang X, Xu S H, Yang F, Li M K, Fang H F, Hou Y Q, Jiang S D, Liu L. A mechanically reconfigurable reflectarray with slotted patches of tunable height. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 555–558
CrossRef
Google scholar
|
[18] |
Yang X, Xu S H, Yang F, Li M K, Hou Y Q, Jiang S D, Liu L. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959–3966
CrossRef
Google scholar
|
[19] |
Yao Y L, Zhang F S, Zhang F. A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2354–2364
CrossRef
Google scholar
|
[20] |
McMichael I T. A mechanically reconfigurable patch antenna with polarization diversity. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1186–1189
CrossRef
Google scholar
|
[21] |
Mei P, Zhang S, Pedersen G F. A wideband 3-D printed reflectarray antenna with mechanically reconfigurable polarization. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1798–1802
CrossRef
Google scholar
|
[22] |
Li P K, You C J, Yu H F, Cheng Y J. Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application. Microwave and Optical Technology Letters, 2017, 59(10): 2526–2531
CrossRef
Google scholar
|
[23] |
Jang T, Zhang C, Youn H, Zhou J, Guo L J. Semitransparent and flexible mechanically reconfigurable electrically small antennas based on tortuous metallic micromesh. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 150–158
CrossRef
Google scholar
|
[24] |
Mathur P, Madanan G, Raman S. Mechanically frequency reconfigurable antenna for WSN, WLAN, and LTE 2500 based internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(2): e22318
CrossRef
Google scholar
|
[25] |
Nassar I T, Tsang H, Bardroff D, Lusk C P, Weller T M. Mechanically reconfigurable, dual-band slot dipole antennas. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3267–3271
CrossRef
Google scholar
|
[26] |
Nauroze S A, Novelino L S, Tentzeris M M, Paulino G H. Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52): 13210–13215
CrossRef
Google scholar
|
[27] |
Zhu H L, Liu X H, Cheung S W, Yuk T I. Frequency-reconfigurable antenna using metasurface. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 80–85
CrossRef
Google scholar
|
[28] |
Chen T R, Lin Y S, Kuo L K, Row J S. Mechanically reconfigurable array with pattern and polarization diversity. Microwave and Optical Technology Letters, 2021, 63(2): 544–549
CrossRef
Google scholar
|
[29] |
Lee Y L, Wang P K, Chen T R, Row J S. A mechanically pattern reconfigurable array. Microwave and Optical Technology Letters, 2020, 62(3): 1386–1390
CrossRef
Google scholar
|
[30] |
Shah S I H, Bashir S, Ashfaq M, Altaf A, Rmili H. Lightweight and low-cost deployable origami antennas—a review. IEEE Access, 2021, 9: 86429–86448
CrossRef
Google scholar
|
[31] |
Chahat N, Hodges R E, Sauder J, Thomson M, Peral E, Rahmat-Samii Y. CubeSat deployable Ka-band mesh reflector antenna development for earth science missions. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2083–2093
CrossRef
Google scholar
|
[32] |
Rahmat-Samii Y, Manohar V, Kovitz J M, Hodges R E, Freebury G, Peral E. Development of highly constrained 1 m Ka-band mesh deployable offset reflector antenna for next generation CubeSat radars. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6254–6266
CrossRef
Google scholar
|
[33] |
Liu A K, Lu J. A UHF deployable log periodic dipole antenna: concept, design, and experiment. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 538–543
CrossRef
Google scholar
|
[34] |
Georgakopoulos S V, Zekios C L, Sattar-Kaddour A, Hamza M, Biswas A, Clark B, Ynchausti C, Howell L L, Magleby S P, Lang R J. Origami antennas. IEEE Open Journal of Antennas and Propagation, 2021, 2: 1020–1043
CrossRef
Google scholar
|
[35] |
Hwang M, Kim G, Kim S, Jeong N S. Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2697–2705
CrossRef
Google scholar
|
[36] |
Yao S, Liu X L, Georgakopoulos S V. Morphing origami conical spiral antenna based on the Nojima wrap. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2222–2232
CrossRef
Google scholar
|
[37] |
Liu X L, Yao S, Cook B S, Tentzeris M M, Georgakopoulos S V. An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5897–5903
CrossRef
Google scholar
|
[38] |
Yaru N. A note on super-gain antenna arrays. Proceedings of the IRE, 1951, 39(9): 1081–1085
CrossRef
Google scholar
|
[39] |
Hansen R C. Fundamental limitations in antennas. Proceedings of the IEEE, 1981, 69(2): 170–182
CrossRef
Google scholar
|
[40] |
Newman E, Schrote M. A wide-band electrically small superdirective array. IRE Transactions on Antennas and Propagation, 1982, 30(6): 1172–1176
CrossRef
Google scholar
|
[41] |
Zhang X, Zhu L. Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5702–5709
CrossRef
Google scholar
|
[42] |
Yagi H. Beam transmission of ultra short waves. Proceedings of the Institute of Radio Engineers, 1928, 16(6): 715–740
CrossRef
Google scholar
|
[43] |
Kullock R, Ochs M, Grimm P, Emmerling M, Hecht B. Electrically-driven Yagi-Uda antennas for light. Nature Communications, 2020, 11(1): 115
CrossRef
Google scholar
|
[44] |
Kramer O, Djerafi T, Wu K. Vertically multilayer-stacked Yagi antenna with single and dual polarizations. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1022–1030
CrossRef
Google scholar
|
[45] |
Yang Y F, You Z. Geometry of transformable metamaterials inspired by modular origami. Journal of Mechanisms and Robotics, 2018, 10(2): 021001
CrossRef
Google scholar
|
[46] |
Jin E, Lee I S, Kim D, Lee H, Jang W D, Lah M S, Min S K, Choe W. Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial. Science Advances, 2019, 5(5): eaav4119
CrossRef
Google scholar
|
/
〈 | 〉 |