Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements

Abubakar M. SADIQ , Yuanqing GU , Yu LUO , Yan CHEN , Kaixue MA

Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (4) : 60

PDF (22179KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (4) : 60 DOI: 10.1007/s11465-022-0716-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements

Author information +
History +
PDF (22179KB)

Abstract

In the artificial intelligence-driven modern wireless communication system, antennas are required to be reconfigurable in terms of size according to changing application scenarios. However, conventional antennas with constant phase distributions cannot achieve enhanced gains in different reconfigurable sizes. In this paper, we propose a mechanically reconfigurable radiation array (RRA) based on miniaturized elements and a mechanically reconfigurable system to obtain gain-enhanced antennas in compact and deployed states. A five-element RRA with a phase-reconfigurable center element is designed and analyzed theoretically. The experimental sample has been fabricated, driven by a deployable frame with only one degree of freedom to realize the size and phase distribution reconfiguration simultaneously to validate the enhanced gains of RRA. The proposed RRA can be tessellated into larger arrays to achieve higher gains in other frequency regimes, such as terahertz or photonics applications with nanometer fabrication technology.

Graphical abstract

Keywords

mechanism / reconfigurable radiation array (RRA) / compact state / deployed state / enhanced gain

Cite this article

Download citation ▾
Abubakar M. SADIQ, Yuanqing GU, Yu LUO, Yan CHEN, Kaixue MA. Gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements. Front. Mech. Eng., 2022, 17(4): 60 DOI:10.1007/s11465-022-0716-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Christodoulou C G, Tawk Y, Lane S A, Erwin S R. Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE, 2012, 100(7): 2250–2261

[2]

Costantine J, Tawk Y, Barbin S E, Christodoulou C G. Reconfigurable antennas: design and applications. Proceedings of the IEEE, 2015, 103(3): 424–437

[3]

Wang Z L, Ge Y H, Pu J X, Chen X X, Li G W, Wang Y F, Liu K T, Zhang H, Chen Z Z. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6806–6810

[4]

Nan J C, Zhao J Y, Gao M M, Yang W D, Wang M H, Xie H. A compact 8-states frequency reconfigurable UWB antenna. IEEE Access, 2021, 9: 144257–144263

[5]

Ke Y H, Yang L L, Chen J X. Design of switchable dual-balun feeding structure for pattern-reconfigurable endfire antenna. IEEE Antennas and Wireless Propagation Letters, 2021, 20(8): 1463–1467

[6]

won Jung C, Lee M J, Li G P, De Flaviis F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 455–463

[7]

Cetiner B A, Crusats G R, Jofre L, Biyikli N. RF MEMS integrated frequency reconfigurable annular slot antenna. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 626–632

[8]

Zohur A, Mopidevi H, Rodrigo D, Unlu M, Jofre L, Cetiner B A. RF MEMS reconfigurable two-band antenna. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 72–75

[9]

Hu J, Yang X J, Ge L, Guo Z J, Hao Z C, Wong H. A reconfigurable 1×4 circularly polarized patch array antenna with frequency, radiation pattern, and polarization agility. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5124–5129

[10]

Wang M N, Tang M, Zhang L P, Zhang H C, Xu J, Cui T J, Mao J F. Miniaturization of frequency-reconfigurable antenna using periodic slow-wave structure. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7889–7894

[11]

Vellucci S, De Sibi D, Monti A, Barbuto M, Salucci G, M A, Oliveri A, Massa F. Multi layered coating metasurfaces enabling frequency reconfigurability in wire antenna. IEEE Open Journal of Antennas and Propagation, 2022, 3: 206–216

[12]

Sayem A S M, Simorangkir R B, Esselle K P, Thalakotuna D N, Lalbakhsh A. An electronically-tunable, flexible, and transparent antenna with unidirectional radiation pattern. IEEE Access, 2021, 9: 147042–147053

[13]

da Costa I F, Cerqueira S A, Spadoti D H, da Silva L G, Ribeiro J A J, Barbin S E. Optically controlled reconfigurable antenna array for mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2142–2145

[14]

Tawk Y, Albrecht A R, Hemmady S, Balakrishnan G, Christodoulou C G. Optically pumped frequency reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 280–283

[15]

Pendharker S, Shevgaonkar R K, Chandorkar A N. Optically controlled frequency-reconfigurable microstrip antenna with low photoconductivity. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 99–102

[16]

Euler M, Fusco V F. Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability. IEEE Transactions on Antennas and Propagation, 2010, 58(10): 3417–3421

[17]

Yang X, Xu S H, Yang F, Li M K, Fang H F, Hou Y Q, Jiang S D, Liu L. A mechanically reconfigurable reflectarray with slotted patches of tunable height. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 555–558

[18]

Yang X, Xu S H, Yang F, Li M K, Hou Y Q, Jiang S D, Liu L. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959–3966

[19]

Yao Y L, Zhang F S, Zhang F. A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2354–2364

[20]

McMichael I T. A mechanically reconfigurable patch antenna with polarization diversity. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1186–1189

[21]

Mei P, Zhang S, Pedersen G F. A wideband 3-D printed reflectarray antenna with mechanically reconfigurable polarization. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1798–1802

[22]

Li P K, You C J, Yu H F, Cheng Y J. Mechanically pattern reconfigurable dual-band antenna with omnidirectional/directional pattern for 2.4/5GHz WLAN application. Microwave and Optical Technology Letters, 2017, 59(10): 2526–2531

[23]

Jang T, Zhang C, Youn H, Zhou J, Guo L J. Semitransparent and flexible mechanically reconfigurable electrically small antennas based on tortuous metallic micromesh. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 150–158

[24]

Mathur P, Madanan G, Raman S. Mechanically frequency reconfigurable antenna for WSN, WLAN, and LTE 2500 based internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(2): e22318

[25]

Nassar I T, Tsang H, Bardroff D, Lusk C P, Weller T M. Mechanically reconfigurable, dual-band slot dipole antennas. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3267–3271

[26]

Nauroze S A, Novelino L S, Tentzeris M M, Paulino G H. Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52): 13210–13215

[27]

Zhu H L, Liu X H, Cheung S W, Yuk T I. Frequency-reconfigurable antenna using metasurface. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 80–85

[28]

Chen T R, Lin Y S, Kuo L K, Row J S. Mechanically reconfigurable array with pattern and polarization diversity. Microwave and Optical Technology Letters, 2021, 63(2): 544–549

[29]

Lee Y L, Wang P K, Chen T R, Row J S. A mechanically pattern reconfigurable array. Microwave and Optical Technology Letters, 2020, 62(3): 1386–1390

[30]

Shah S I H, Bashir S, Ashfaq M, Altaf A, Rmili H. Lightweight and low-cost deployable origami antennas—a review. IEEE Access, 2021, 9: 86429–86448

[31]

Chahat N, Hodges R E, Sauder J, Thomson M, Peral E, Rahmat-Samii Y. CubeSat deployable Ka-band mesh reflector antenna development for earth science missions. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2083–2093

[32]

Rahmat-Samii Y, Manohar V, Kovitz J M, Hodges R E, Freebury G, Peral E. Development of highly constrained 1 m Ka-band mesh deployable offset reflector antenna for next generation CubeSat radars. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6254–6266

[33]

Liu A K, Lu J. A UHF deployable log periodic dipole antenna: concept, design, and experiment. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 538–543

[34]

Georgakopoulos S V, Zekios C L, Sattar-Kaddour A, Hamza M, Biswas A, Clark B, Ynchausti C, Howell L L, Magleby S P, Lang R J. Origami antennas. IEEE Open Journal of Antennas and Propagation, 2021, 2: 1020–1043

[35]

Hwang M, Kim G, Kim S, Jeong N S. Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2697–2705

[36]

Yao S, Liu X L, Georgakopoulos S V. Morphing origami conical spiral antenna based on the Nojima wrap. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2222–2232

[37]

Liu X L, Yao S, Cook B S, Tentzeris M M, Georgakopoulos S V. An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5897–5903

[38]

Yaru N. A note on super-gain antenna arrays. Proceedings of the IRE, 1951, 39(9): 1081–1085

[39]

Hansen R C. Fundamental limitations in antennas. Proceedings of the IEEE, 1981, 69(2): 170–182

[40]

Newman E, Schrote M. A wide-band electrically small superdirective array. IRE Transactions on Antennas and Propagation, 1982, 30(6): 1172–1176

[41]

Zhang X, Zhu L. Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5702–5709

[42]

Yagi H. Beam transmission of ultra short waves. Proceedings of the Institute of Radio Engineers, 1928, 16(6): 715–740

[43]

Kullock R, Ochs M, Grimm P, Emmerling M, Hecht B. Electrically-driven Yagi-Uda antennas for light. Nature Communications, 2020, 11(1): 115

[44]

Kramer O, Djerafi T, Wu K. Vertically multilayer-stacked Yagi antenna with single and dual polarizations. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1022–1030

[45]

Yang Y F, You Z. Geometry of transformable metamaterials inspired by modular origami. Journal of Mechanisms and Robotics, 2018, 10(2): 021001

[46]

Jin E, Lee I S, Kim D, Lee H, Jang W D, Lah M S, Min S K, Choe W. Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial. Science Advances, 2019, 5(5): eaav4119

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (22179KB)

5705

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/