Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics

Kun XU, Peijin ZI, Xilun DING

PDF(16155 KB)
PDF(16155 KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 43. DOI: 10.1007/s11465-022-0699-x
REVIEW ARTICLE
REVIEW ARTICLE

Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics

Author information +
History +

Abstract

Many organisms have attachment organs with excellent functions, such as adhesion, clinging, and grasping, as a result of biological evolution to adapt to complex living environments. From nanoscale to macroscale, each type of adhesive organ has its own underlying mechanisms. Many biological adhesive mechanisms have been studied and can be incorporated into robot designs. This paper presents a systematic review of reversible biological adhesive methods and the bioinspired attachment devices that can be used in robotics. The study discussed how biological adhesive methods, such as dry adhesion, wet adhesion, mechanical adhesion, and sub-ambient pressure adhesion, progress in research. The morphology of typical adhesive organs, as well as the corresponding attachment models, is highlighted. The current state of bioinspired attachment device design and fabrication is discussed. Then, the design principles of attachment devices are summarized in this article. The following section provides a systematic overview of climbing robots with bioinspired attachment devices. Finally, the current challenges and opportunities in bioinspired attachment research in robotics are discussed.

Graphical abstract

Keywords

adhesion / bioinspired attachment / biomimetic gripper / climbing robot

Cite this article

Download citation ▾
Kun XU, Peijin ZI, Xilun DING. Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics. Front. Mech. Eng., 2022, 17(3): 43 https://doi.org/10.1007/s11465-022-0699-x

References

[1]
Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681–685
CrossRef Google scholar
[2]
Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12252–12256
CrossRef Google scholar
[3]
Tramacere F, Kovalev A, Kleinteich T, Gorb S N, Mazzolai B. Structure and mechanical properties of Octopus vulgaris suckers. Journal of the Royal Society Interface, 2014, 11(91): 20130816
CrossRef Google scholar
[4]
Dai Z D, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). Journal of Experimental Biology, 2002, 205(16): 2479–2488
CrossRef Google scholar
[5]
Voigt D, de Souza E J, Kovalev A, Gorb S. Inter- and intraspecific differences in leaf beetle attachment on rigid and compliant substrates. Journal of Zoology, 2019, 307(1): 1–8
CrossRef Google scholar
[6]
Gorb S N. Biological attachment devices: exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2008, 366(1870): 1557–1574
CrossRef Google scholar
[7]
Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10603–10606
CrossRef Google scholar
[8]
Kesel A B, Martin A, Seidl T. Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. Journal of Experimental Biology, 2003, 206(16): 2733–2738
CrossRef Google scholar
[9]
Niederegger S, Gorb S N. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. Journal of Comparative Physiology A, 2006, 192(11): 1223–1232
CrossRef Google scholar
[10]
Gasparetto A, Seidl T, Vidoni R. A mechanical model for the adhesion of spiders to nominally flat surfaces. Journal of Bionics Engineering, 2009, 6(2): 135–142
CrossRef Google scholar
[11]
Barnes W J P. Functional morphology and design constraints of smooth adhesive pads. MRS Bulletin, 2007, 32(6): 479–485
CrossRef Google scholar
[12]
Wang Y P, Yang X B, Chen Y F, Wainwright D K, Kenaley C P, Gong Z Y, Liu Z M, Liu H, Guan J, Wang T M, Weaver J C, Wood R J, Wen L. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Science Robotics, 2017, 2(10): eaan8072
CrossRef Google scholar
[13]
LiJ, GaoX S, FanN J, Li K J, Jiang Z H, Jiang Z J. Adsorption performance of sliding wall-climbing robot. Chinese Journal of Mechanical Engineering, 2010, 23(6): 733–741
CrossRef Google scholar
[14]
Gao Y, Wei W, Wang X M, Li Y J, Wang D L, Yu Q D. Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Applied Intelligence, 2021, 51(8): 5506–5524
CrossRef Google scholar
[15]
Geissmann L, Denuder M, Keusch D, Pfirter L, Röthlisberger D, Ritter M, Thoma P, Siegwart R, Fischer W, Caprari G, Weber J, Beardsley P. Paraswift—a hybrid climbing and base jumping robot for entertainment, In: Bidaud P, Tokhi M O, Grand C, Virk G S, eds. Field Robotics. Paris: World Scientific, 2012, 397–406
CrossRef Google scholar
[16]
Schmidt D, Berns K. Climbing robots for maintenance and inspections of vertical structures—a survey of design aspects and technologies. Robotics and Autonomous Systems, 2013, 61(12): 1288–1305
CrossRef Google scholar
[17]
KimSSpenkoM TrujilloSHeyneman BMattoliVCutkoskyM R. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007, 1268–1273
[18]
Spenko M J, Haynes G C, Saunders J A, Cutkosky M R, Rizzi A A, Full R J, Koditschek D E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics, 2008, 25(4–5): 223–242
CrossRef Google scholar
[19]
Parness A, Frost M, Thatte N, King J P, Witkoe K, Nevarez M, Garrett M, Aghazarian H, Kennedy B. Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers. Journal of Field Robotics, 2013, 30(6): 897–915
CrossRef Google scholar
[20]
Chu Z Y, Wang C, Hai X, Deng J, Cui J, Sun L N. Analysis and measurement of adhesive behavior for gecko-inspired synthetic microwedge structure. Advanced Materials Interfaces, 2019, 6(12): 1900283
CrossRef Google scholar
[21]
Wang Z Z. Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano, 2018, 12(2): 1273–1284
CrossRef Google scholar
[22]
Sandoval J A, Jadhav S, Quan H, Deheyn D D, Tolley M T. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc. Bioinspiration & Biomimetics, 2019, 14(6): 066016
CrossRef Google scholar
[23]
Yang X, Tan R, Lu H J, Shen Y J. Starfish inspired milli soft robot with omnidirectional adaptive locomotion ability. IEEE Robotics and Automation Letters, 2021, 6(2): 3325–3332
CrossRef Google scholar
[24]
Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 2008, 24(1): 65–74
CrossRef Google scholar
[25]
Parness A, Abcouwer N, Fuller C, Wiltsie N, Nash J, Kennedy B. LEMUR 3: A limbed climbing robot for extreme terrain mobility in space. In: Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017, 5467–5473
CrossRef Google scholar
[26]
Santos D, Heyneman K, Kim S, Esparza N, Cutkosky M R. Gecko-inspired climbing behaviors on vertical and overhanging surfaces. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 1125–1131
CrossRef Google scholar
[27]
Lam T L, Xu Y S. Climbing strategy for a flexible tree climbing robot-treebot. IEEE Transactions on Robotics, 2011, 27(6): 1107–1117
CrossRef Google scholar
[28]
Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10603–10606
CrossRef Google scholar
[29]
Ji A H, Han L B, Dai Z D. Adhesive contact in animal: morphology, mechanism and bio-inspired application. Journal of Bionics Engineering, 2011, 8(4): 345–356
CrossRef Google scholar
[30]
IsraelachviliJ N. Intermolecular and Surface Forces. 3rd ed. Washington: Academic Press, 2011
[31]
Tian Y, Pesika N, Zeng H B, Rosenberg K, Zhao B X, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51): 19320–19325
CrossRef Google scholar
[32]
Majidi C, O’Reilly O M, Williams J A. On the stability of a rod adhering to a rigid surface: shear-induced stable adhesion and the instability of peeling. Journal of the Mechanics and Physics of Solids, 2012, 60(5): 827–843
CrossRef Google scholar
[33]
Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 2002, 42(6): 1081–1090
CrossRef Google scholar
[34]
Autumn K. Gecko adhesion: structure, function, and applications. MRS Bulletin, 2007, 32(6): 473–478
CrossRef Google scholar
[35]
Kwak J S, Kim T W. A review of adhesion and friction models for gecko feet. International Journal of Precision Engineering and Manufacturing, 2010, 11(1): 171–186
CrossRef Google scholar
[36]
Chen B, Wu P D, Gao H. Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2094): 1639–1652
CrossRef Google scholar
[37]
FederleW. Why are so many adhesive pads hairy? Journal of Experimental Biology, 2006, 209(14): 2611–2621
CrossRef Google scholar
[38]
Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 385–389
CrossRef Google scholar
[39]
Hu S H, Lopez S, Niewiarowski P H, Xia Z H. Dynamic self-cleaning in gecko setae via digital hyperextension. Journal of the Royal Society Interface, 2012, 9(76): 2781–2790
CrossRef Google scholar
[40]
Xu Q, Wan Y Y, Hu T S H, Liu T X, Tao D S, Niewiarowski P H, Tian Y, Liu Y, Dai L M, Yang Y Q, Xia Z H. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015, 6(1): 8949
CrossRef Google scholar
[41]
Li Y S, Krahn J, Menon C. Bioinspired dry adhesive materials and their application in robotics: a review. Journal of Bionic Engineering, 2016, 13(2): 181–199
CrossRef Google scholar
[42]
Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: a new angle on gecko attachment. Journal of Experimental Biology, 2006, 209(18): 3569–3579
CrossRef Google scholar
[43]
Gravish N, Wilkinson M, Autumn K. Frictional and elastic energy in gecko adhesive detachment. Journal of the Royal Society Interface, 2008, 5(20): 339–348
CrossRef Google scholar
[44]
Hensel R, Moh K, Arzt E. Engineering micropatterned dry adhesives: from contact theory to handling applications. Advanced Functional Materials, 2018, 28(28): 1800865
CrossRef Google scholar
[45]
Wang W, Liu Y, Xie Z W. Gecko-like dry adhesive surfaces and their applications: a review. Journal of Bionics Engineering, 2021, 18(5): 1011–1044
CrossRef Google scholar
[46]
Spolenak R, Gorb S, Arzt E. Adhesion design maps for bio-inspired attachment systems. Acta Biomaterialia, 2005, 1(1): 5–13
CrossRef Google scholar
[47]
Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2(7): 461–463
CrossRef Google scholar
[48]
Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 2003, 17(8): 1055–1073
CrossRef Google scholar
[49]
Glassmaker N J, Jagota A, Hui C Y, Kim J. Design of biomimetic fibrillar interfaces: 1. making contact. Journal of the Royal Society Interface, 2004, 1(1): 23–33
CrossRef Google scholar
[50]
Hui C Y, Glassmaker N J, Tang T, Jagota A. Design of biomimetic fibrillar interfaces: 2. mechanics of enhanced adhesion. Journal of the Royal Society Interface, 2004, 1(1): 35–48
CrossRef Google scholar
[51]
Murphy M P, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small, 2009, 5(2): 170–175
CrossRef Google scholar
[52]
Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. Journal of Micromechanics and Microengineering, 2009, 19(11): 115002
CrossRef Google scholar
[53]
Krahn J, Liu Y, Sadeghi A, Menon C. A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps. Smart Materials and Structures, 2011, 20(11): 115021
CrossRef Google scholar
[54]
Breckwoldt W A, Daltorio K A, Heepe L, Horchler A D, Gorb S N, Quinn R D. Walking inverted on ceilings with wheel-legs and micro-structured adhesives. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2015, 3308–3313
CrossRef Google scholar
[55]
Yu Z W, Shi Y, Xie J X, Yang S X, Dai Z D. Design and analysis of a bionic adhesive foot for gecko robot climbing the ceiling. International Journal of Robotics and Automation, 2018, 33(4): 445–454
CrossRef Google scholar
[56]
Parness A, Soto D, Esparza N, Gravish N, Wilkinson M, Autumn K, Cutkosky M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. Journal of the Royal Society Interface, 2009, 6(41): 1223–1232
CrossRef Google scholar
[57]
Jiang H, Hawkes E W, Fuller C, Estrada M A, Suresh S A, Abcouwer N, Han A K, Wang S Q, Ploch C J, Parness A, Cutkosky M R. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2017, 2(7): eaan4545
CrossRef Google scholar
[58]
Alizadehyazdi V, Bonthron M, Spenko M. An electrostatic/gecko-inspired adhesives soft robotic gripper. IEEE Robotics and Automation Letters, 2020, 5(3): 4679–4686
CrossRef Google scholar
[59]
Hossfeld C K, Schneider A S, Arzt E, Frick C P. Detachment behavior of mushroom-shaped fibrillar adhesive surfaces in peel testing. Langmuir, 2013, 29(49): 15394–15404
CrossRef Google scholar
[60]
Heepe L, Kovalev A E, Filippov A E, Gorb S N. Adhesion failure at 180000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Physical Review Letters, 2013, 111(10): 104301
CrossRef Google scholar
[61]
del Campo A, Greiner C, Alvarez I, Arzt E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Advanced Materials, 2007, 19(15): 1973–1977
CrossRef Google scholar
[62]
Gorb S, Varenberg M, Peressadko A, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface, 2007, 4(13): 271–275
CrossRef Google scholar
[63]
Davies J, Haq S, Hawke T, Sargent J P. A practical approach to the development of a synthetic Gecko tape. International Journal of Adhesion and Adhesives, 2009, 29(4): 380–390
CrossRef Google scholar
[64]
Lee D Y, Lee D H, Lee S G, Cho K. Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter, 2012, 8(18): 4905–4910
CrossRef Google scholar
[65]
Li X S, Tao D S, Lu H, Bai P, Liu Z, Ma L, Meng Y, Tian Y. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surface Topography: Metrology and Properties, 2019, 7(2): 023001
CrossRef Google scholar
[66]
Murphy M P, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 2009, 1(4): 849–855
CrossRef Google scholar
[67]
Wang Y, Hu H, Shao J Y, Ding Y C. Fabrication of well-defined mushroom-shaped structures for biomimetic dry adhesive by conventional photolithography and molding. ACS Applied Materials & Interfaces, 2014, 6(4): 2213–2218
CrossRef Google scholar
[68]
Wang Y, Tian H M, Shao J Y, Sameoto D, Li X M, Wang L, Hu H, Ding Y C, Lu B H. Switchable dry adhesion with step-like micropillars and controllable interfacial contact. ACS Applied Materials & Interfaces, 2016, 8(15): 10029–10037
CrossRef Google scholar
[69]
Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5639–5644
CrossRef Google scholar
[70]
Brodoceanu D, Bauer C T, Kroner E, Arzt E, Kraus T. Hierarchical bioinspired adhesive surfaces—a review. Bioinspiration & Biomimetics, 2016, 11(5): 051001
CrossRef Google scholar
[71]
Greiner C, Arzt E, del Campo A. Hierarchical gecko-like adhesives. Advanced Materials, 2009, 21(4): 479–482
CrossRef Google scholar
[72]
Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews, 2013, 7(1): 22–44
CrossRef Google scholar
[73]
Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir, 2008, 24(19): 10587–10591
CrossRef Google scholar
[74]
Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 2012, 42: 231–263
CrossRef Google scholar
[75]
Gillies A G, Puthoff J, Cohen M J, Autumn K, Fearing R S. Dry self-cleaning properties of hard and soft fibrillar structures. ACS Applied Materials & Interfaces, 2013, 5(13): 6081–6088
CrossRef Google scholar
[76]
Mengüç Y, Röhrig M, Abusomwan U, Hölscher H, Sitti M. Staying sticky: contact self-cleaning of gecko-inspired adhesives. Journal of the Royal Society, Interface, 2014, 11(94): 20131205
CrossRef Google scholar
[77]
Jagdheesh R, Diaz M, Ocana J L. Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing. RSC Advances, 2016, 6(77): 72933–72941
CrossRef Google scholar
[78]
Bovero E, Krahn J, Menon C. Fabrication and testing of self cleaning dry adhesives utilizing hydrophobicity gradient. Journal of Bionics Engineering, 2015, 12(2): 270–275
CrossRef Google scholar
[79]
Kwak M K, Jeong H E, Suh K Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Advanced Materials, 2011, 23(34): 3949–3953
CrossRef Google scholar
[80]
Henrey M, Ahmed A, Boscariol P, Shannon L, Menon C. Abigaille-III: a versatile, bioinspired hexapod for scaling smooth vertical surfaces. Journal of Bionics Engineering, 2014, 11(1): 1–17
CrossRef Google scholar
[81]
Liu Y H, Seo T W. AnyClimb-II: dry-adhesive linkage-type climbing robot for uneven vertical surfaces. Mechanism and Machine Theory, 2018, 124: 197–210
CrossRef Google scholar
[82]
Unver O, Uneri A, Aydemir A, Sitti M. Geckobot: a gecko inspired climbing robot using elastomer adhesives. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006, 2329–2335
CrossRef Google scholar
[83]
Ko H, Yi H, Jeong H E. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3): 273–280
CrossRef Google scholar
[84]
Shao D H, Chen J, Ji A H, Dai Z D, Manoonpong P. Hybrid soft-rigid foot with dry adhesive material designed for a gecko-inspired climbing robot. In: Proceedings of 2020 the 3rd IEEE International Conference on Soft Robotics. New Haven: IEEE, 2020, 578–585
CrossRef Google scholar
[85]
Birkmeyer P, Gillies A G, Fearing R S. Dynamic climbing of near-vertical smooth surfaces. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012, 286–292
CrossRef Google scholar
[86]
Li Y S, Ahmed A, Sameoto D, Menon C. Abigaille II: toward the development of a spider-inspired climbing robot. Robotica, 2012, 30(1): 79–89
CrossRef Google scholar
[87]
Liu Y H, Kim H G, Seo T W. AnyClimb: a new wall-climbing robotic platform for various curvatures. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 1812–1821
CrossRef Google scholar
[88]
Murphy M P, Sitti M. Waalbot: an agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Transactions on Mechatronics, 2007, 12(3): 330–338
CrossRef Google scholar
[89]
Lee G, Kim H, Seo K, Kim J, Sitti M, Seo T W. Series of multilinked caterpillar track-type climbing robots. Journal of Field Robotics, 2016, 33(6): 737–750
CrossRef Google scholar
[90]
Murphy M P, Kute C, Mengüç Y, Sitti M. Waalbot II: adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. The International Journal of Robotics Research, 2011, 30(1): 118–133
CrossRef Google scholar
[91]
Dharmawan A G, Xavier P, Hariri H H, Soh G S, Baji A, Bouffanais R, Foong S H, Low H Y, Wood K L. Design, modeling, and experimentation of a bio-inspired miniature climbing robot with bilayer dry adhesives. Journal of Mechanisms and Robotics, 2019, 11(2): 020902
CrossRef Google scholar
[92]
Unver O, Sitti M. Tankbot: a palm-size, tank-like climbing robot using soft elastomer adhesive treads. The International Journal of Robotics Research, 2010, 29(14): 1761–1777
CrossRef Google scholar
[93]
Song S, Drotlef D M, Majidi C, Sitti M. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(22): E4344–E4353
CrossRef Google scholar
[94]
Glick P, Suresh S A, Ruffatto D, Cutkosky M, Tolley M T, Parness A. A soft robotic gripper with gecko-inspired adhesive. IEEE Robotics and Automation Letters, 2018, 3(2): 903–910
CrossRef Google scholar
[95]
Hashizume J, Huh T M, Suresh S A, Cutkosky M R. Capacitive sensing for a gripper with gecko-inspired adhesive film. IEEE Robotics and Automation Letters, 2019, 4(2): 677–683
CrossRef Google scholar
[96]
Ruotolo W, Brouwer D, Cutkosky M R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Science Robotics, 2021, 6(61): eabi9773
[97]
Dadkhah M, Zhao Z Y, Wettels N, Spenko M. A self-aligning gripper using an electrostatic/gecko-like adhesive. In: Proceeding of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016, 1006–1011
CrossRef Google scholar
[98]
Hawkes E W, Jiang H, Cutkosky M R. Three-dimensional dynamic surface grasping with dry adhesion. The International Journal of Robotics Research, 2016, 35(8): 943–958
[99]
Hao Y F, Biswas S, Hawkes E W, Wang T M, Zhu M J, Wen L, Visell Y. A multimodal, enveloping soft gripper: shape conformation, bioinspired adhesion, and expansion-driven suction. IEEE Transactions on Robotics, 2021, 37(2): 350–362
CrossRef Google scholar
[100]
Hu Q Q, Dong E B, Sun D. Soft gripper design based on the integration of flat dry adhesive, soft actuator, and microspine. IEEE Transactions on Robotics, 2021, 37(4): 1065–1080
CrossRef Google scholar
[101]
Niederegger S, Gorb S. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. Journal of Insect Physiology, 2003, 49(6): 611–620
CrossRef Google scholar
[102]
Persson B N J. Wet adhesion with application to tree frog adhesive toe pads and tires. Journal of Physics Condensed Matter, 2007, 19(37): 376110
CrossRef Google scholar
[103]
Scholz I, Barnes W J P, Smith J M, Baumgartner W. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. Journal of Experimental Biology, 2009, 212(2): 155–162
CrossRef Google scholar
[104]
He B, Wang Z B, Li M H, Wang K, Shen R J, Hu S Q. Wet adhesion inspired bionic climbing robot. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 312–320
CrossRef Google scholar
[105]
Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1661): 20140027
CrossRef Google scholar
[106]
SlaterD M, Vogel M J, MacnerA M, SteenP H. Beetle-inspired adhesion by capillary-bridge arrays: pull-off detachment. Journal of Adhesion Science and Technology, 2014, 28(3–4): 273–289
CrossRef Google scholar
[107]
De Souza E J, Brinkmann M, Mohrdieck C, Arzt E. Enhancement of capillary forces by multiple liquid bridges. Langmuir, 2008, 24(16): 8813–8820
CrossRef Google scholar
[108]
Crawford N, Endlein T, Barnes W J P. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. Journal of Experimental Biology, 2012, 215(22): 3965–3972
CrossRef Google scholar
[109]
Tulchinsky A, Gat A D. Viscous-poroelastic interaction as mechanism to create adhesion in frogs’ toe pads. Journal of Fluid Mechanics, 2015, 775: 288–303
CrossRef Google scholar
[110]
Chen Y P, Meng J X, Gu Z, Wan X Z, Jiang L, Wang S T. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Advanced Functional Materials, 2020, 30(5): 1905287
CrossRef Google scholar
[111]
Zhang C, Wu B H, Zhou Y S, Zhou F, Liu W M, Wang Z K. Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49(11): 3605–3637
CrossRef Google scholar
[112]
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. Advanced Materials, 2013, 25(5): 653–701
CrossRef Google scholar
[113]
Huang J W, Liu Y, Yang Y X, Zhou Z J, Mao J, Wu T, Cai Q P, Peng C H, Xu Y T, Zeng B R, Luo W A, Chen G R, Yuan C H, Dai L Z. Electrically programmable adhesive hydrogels for climbing robots. Science Robotics, 2021, 6(53): eabe1858
CrossRef Google scholar
[114]
Chen H W, Zhang L W, Zhang D Y, Zhang P F, Han Z W. Bioinspired surface for surgical graspers based on the strong wet friction of tree frog toe pads. ACS Applied Materials & Interfaces, 2015, 7(25): 13987–13995
CrossRef Google scholar
[115]
Ko H, Seong M, Jeong H E. A micropatterned elastomeric surface with enhanced frictional properties under wet conditions and its application. Soft Matter, 2017, 13(45): 8419–8425
CrossRef Google scholar
[116]
Vogel M J, Steen P H. Capillarity-based switchable adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3377–3381
CrossRef Google scholar
[117]
Meng F D, Liu Q, Wang X, Tan D, Xue L J, Barnes W J P. Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2019, 377(2150): 20190131
CrossRef Google scholar
[118]
Iturri J, Xue L J, Kappl M, García-Fernández L, Barnes W J P, Butt H J, del Campo A. Torrent frog-inspired adhesives: attachment to flooded surfaces. Advanced Functional Materials, 2015, 25(10): 1499–1505
CrossRef Google scholar
[119]
Xie J, Li M, Dai Q W, Huang W, Wang X L. Key parameters of biomimetic patterned surface for wet adhesion. International Journal of Adhesion and Adhesives, 2018, 82: 72–78
[120]
Xue L J, Sanz B, Luo A Y, Turner K T, Wang X, Tan D, Zhang R, Du H, Steinhart M, Mijangos C, Guttmann M, Kappl M, del Campo A. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano, 2017, 11(10): 9711–9719
CrossRef Google scholar
[121]
Drotlef D M, Stepien L, Kappl M, Barnes W J P, Butt H J, del Campo A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Advanced Functional Materials, 2013, 23(9): 1137–1146
CrossRef Google scholar
[122]
Chen Y F, Doshi N, Wood R J. Inverted and inclined climbing using capillary adhesion in a quadrupedal insect-scale robot. IEEE Robotics and Automation Letters, 2020, 5(3): 4820–4827
CrossRef Google scholar
[123]
Lee B P. Climbing robots in a sticky situation. Science Robotics, 2021, 6(53): eabh2682
CrossRef Google scholar
[124]
Van Nguyen P, Ho V A. Grasping interface with wet adhesion and patterned morphology: case of thin shell. IEEE Robotics and Automation Letters, 2019, 4(2): 792–799
CrossRef Google scholar
[125]
Suzuki K, Nemoto S, Fukuda T, Takanobu H, Miura H. Insect-inspired wall-climbing robots utilizing surface tension forces. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2010, 4(1): 383–390
CrossRef Google scholar
[126]
Li M H, He B, Qin H Y, Zhou Y M, Lu H X, Yue J G. A wet adhesion inspired biomimetic pad with direction dependence and adaptability. Chinese Science Bulletin, 2011, 56(18): 1935–1941
CrossRef Google scholar
[127]
Xin W C, Pan F T L, Li Y H, Chiu P W Y, Li Z. Design and modeling of a biomimetic gastropod-like soft robot with wet adhesive locomotion. In: Proceedings of 2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021, 11997–12003
CrossRef Google scholar
[128]
Van Nguyen P, Luu Q K, Takamura Y, Ho V A. Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects. In: Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020, 9213–9219
CrossRef Google scholar
[129]
Roderick W R, Chin D D, Cutkosky M R, Lentink D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife, 2019, 8: e46415
CrossRef Google scholar
[130]
Zani P A. The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of Evolutionary Biology, 2000, 13(2): 316–325
CrossRef Google scholar
[131]
Spenko M, Cutkosky M, Majidi C, Fearing R, Groff R, Autumn K. Foot design and integration for bioinspired climbing robots. In: Gerhart G R, Shoemaker C M, Gage D W, eds. Unmanned Systems Technology VIII. Bellingham: SPIE, 2006, 623019
CrossRef Google scholar
[132]
Lam T L, Xu Y S. Biologically inspired tree-climbing robot with continuum maneuvering mechanism. Journal of Field Robotics, 2012, 29(6): 843–860
CrossRef Google scholar
[133]
Sarmiento-Ponce E J, Sutcliffe M P F, Hedwig B. Substrate texture affects female cricket walking response to male calling song. Royal Society Open Science, 2018, 5(3): 172334
CrossRef Google scholar
[134]
Frantsevich L, Gorb S. Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. Arthropod Structure & Development, 2004, 33(1): 77–89
CrossRef Google scholar
[135]
Woodward M A, Sitti M. Morphological intelligence counters foot slipping in the desert locust and dynamic robots. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): E8358–E8367
CrossRef Google scholar
[136]
Han L B, Wang Z Y, Ji A H, Dai Z D. Grip and detachment of locusts on inverted sandpaper substrates. Bioinspiration & Biomimetics, 2011, 6(4): 046005
CrossRef Google scholar
[137]
Roderick W R, Cutkosky M R, Lentink D. Bird-inspired dynamic grasping and perching in arboreal environments. Science Robotics, 2021, 6(61): eabj7562
CrossRef Google scholar
[138]
Pattrick J G, Labonte D, Federle W. Scaling of claw sharpness: mechanical constraints reduce attachment performance in larger insects. Journal of Experimental Biology, 2018, 221(24): jeb188391
CrossRef Google scholar
[139]
Asbeck A T, Kim S, Cutkosky M R, Provancher W R, Lanzetta M. Scaling hard vertical surfaces with compliant microspine arrays. The International Journal of Robotics Research, 2006, 25(12): 1165–1179
CrossRef Google scholar
[140]
Lee J S, Plecnik M, Yang J H, Fearing R S. Self-engaging spined gripper with dynamic penetration and release for steep jumps. In: Proceedings of 2018 IEEE international conference on robotics and automation. Brisbane: IEEE, 2018, 6082–6089
CrossRef Google scholar
[141]
Liu Y W, Sun S M, Wu X, Mei T. A wheeled wall-climbing robot with bio-inspired spine mechanisms. Journal of Bionics Engineering, 2015, 12(1): 17–28
CrossRef Google scholar
[142]
Wang S Q, Jiang H, Cutkosky M R. Design and modeling of linearly-constrained compliant spines for human-scale locomotion on rocky surfaces. The International Journal of Robotics Research, 2017, 36(9): 985–999
CrossRef Google scholar
[143]
Sintov A, Avramovich T, Shapiro A. Design and motion planning of an autonomous climbing robot with claws. Robotics and Autonomous Systems, 2011, 59(11): 1008–1019
CrossRef Google scholar
[144]
Brown J M, Austin M P, Miller B D, Clark J E. Evidence for multiple dynamic climbing gait families. Bioinspiration & Biomimetics, 2019, 14(3): 036001
CrossRef Google scholar
[145]
Weiss L E, Merz R, Prinz F B, Neplotnik G, Padmanabhan P, Schultz L, Ramaswami K. Shape deposition manufacturing of heterogeneous structures. Journal of Manufacturing Systems, 1997, 16(4): 239–248
CrossRef Google scholar
[146]
Lynch G A, Clark J E, Lin P C, Koditschek D E. A bioinspired dynamical vertical climbing robot. The International Journal of Robotics Research, 2012, 31(8): 974–996
CrossRef Google scholar
[147]
Hu Q Q, Dong E B, Cheng G, Jin H, Yang J, Sun D. Inchworm-inspired soft climbing robot using microspine arrays. In: Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao: IEEE, 2019, 5800–5805
CrossRef Google scholar
[148]
Liu Y W, Wang L M, Niu F Z, Li P Y, Li Y, Mei T. A track-type inverted climbing robot with bio-inspired spiny grippers. Journal of Bionics Engineering, 2020, 17(5): 920–931
CrossRef Google scholar
[149]
Carpenter K, Wiltsie N, Parness A. Rotary microspine rough surface mobility. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2378–2390
CrossRef Google scholar
[150]
Backus S B, Onishi R, Bocklund A, Berg A, Contreras E D, Parness A. Design and testing of the JPL-Nautilus gripper for deep-ocean geological sampling. Journal of Field Robotics, 2020, 37(6): 972–986
CrossRef Google scholar
[151]
Xu F Y, Wang B, Shen J J, Hu J L, Jiang G P. Design and realization of the claw gripper system of a climbing robot. Journal of Intelligent & Robotic Systems, 2018, 89(3): 301–317
CrossRef Google scholar
[152]
Su M J, Guan Y S, Huang D Y, Zhu H F. Modeling and analysis of a passively adaptive soft gripper with the bio-inspired compliant mechanism. Bioinspiration & Biomimetics, 2021, 16(5): 055001
CrossRef Google scholar
[153]
Uckert K, Parness A, Chanover N, Eshelman E J, Abcouwer N, Nash J, Detry R, Fuller C, Voelz D, Hull R, Flannery D, Bhartia R, Manatt K S, Abbey W J, Boston P. Investigating habitability with an integrated rock-climbing robot and astrobiology instrument suite. Astrobiology, 2020, 20(12): 1427–1449
CrossRef Google scholar
[154]
Kwasi Boohene A N, Newill-Smith D, Trieu T, Stengel R F. Prototype for an asteroid exploratory robot using multi-phalanx microspine grippers. In: Proceedings of AIAA SPACE Conference and Exposition. Reston: AIAA, 2015, 4585
CrossRef Google scholar
[155]
Nagaoka K, Minote H, Maruya K, Shirai Y, Yoshida K, Hakamada T, Sawada H, Kubota T. Passive spine gripper for free-climbing robot in extreme terrain. IEEE Robotics and Automation Letters, 2018, 3(3): 1765–1770
CrossRef Google scholar
[156]
Uno K, Takada N, Okawara T, Haji K, Candalot A, Ribeiro W F R, Nagaoka K, Yoshida K. Hubrobo: a lightweight multi-limbed climbing robot for exploration in challenging terrain. In: Proceedings of 2020 IEEE-RAS the 20th International Conference on Humanoid Robots (Humanoids). Munich: IEEE, 2021, 209–215
CrossRef Google scholar
[157]
Jiang H, Wang S Q, Cutkosky M R. Stochastic models of compliant spine arrays for rough surface grasping. The International Journal of Robotics Research, 2018, 37(7): 669–687
CrossRef Google scholar
[158]
Wang S Q, Jiang H, Myung Huh T, Sun D N, Ruotolo W, Miller M, Roderick W R T, Stuart H S, Cutkosky M R. Spinyhand: contact load sharing for a human-scale climbing robot. Journal of Mechanisms and Robotics, 2019, 11(3): 031009
CrossRef Google scholar
[159]
Ruotolo W, Roig F S, Cutkosky M R. Load-sharing in soft and spiny paws for a large climbing robot. IEEE Robotics and Automation Letters, 2019, 4(2): 1439–1446
CrossRef Google scholar
[160]
Xu F Y, Meng F C, Jiang Q S, Peng G L. Grappling claws for a robot to climb rough wall surfaces: mechanical design, grasping algorithm, and experiments. Robotics and Autonomous Systems, 2020, 128: 103501
CrossRef Google scholar
[161]
Tavakoli M, Marjovi A, Marques L, de Almeida A T. 3DCLIMBER: a climbing robot for inspection of 3D human made structures. In: Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008, 4130–4135
CrossRef Google scholar
[162]
Guan Y S, Jiang L, Zhu H F, Wu W Q, Zhou X F, Zhang H, Zhang X M. Climbot: a bio-inspired modular biped climbing robot—system development, climbing gaits, and experiments. Journal of Mechanisms and Robotics, 2016, 8(2): 021026
CrossRef Google scholar
[163]
Liu Y Y, Lam T L, Qian H H, Xu Y S. Design and analysis of gripper with retractable spine for tree climbing robots. In: Proceedings of 2014 IEEE International Conference on Information and Automation. Hailar: IEEE, 2014, 350–355
CrossRef Google scholar
[164]
Tramacere F, Beccai L, Sinibaldi E, Laschi C, Mazzolai B. Adhesion mechanisms inspired by octopus suckers. Procedia Computer Science, 2011, 7: 192–193
CrossRef Google scholar
[165]
Kier W M, Smith A M. The morphology and mechanics of octopus suckers. Biological Bulletin, 1990, 178(2): 126–136
CrossRef Google scholar
[166]
Kier W M, Smith A M. The structure and adhesive mechanism of octopus suckers. Integrative and Comparative Biology, 2002, 42(6): 1146–1153
CrossRef Google scholar
[167]
Tramacere F, Beccai L, Mattioli F, Sinibaldi E, Mazzolai B. Artificial adhesion mechanisms inspired by octopus suckers. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012, 3846–3851
CrossRef Google scholar
[168]
Tramacere F, Pugno N M, Kuba M J, Mazzolai B. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus, 2015, 5(1): 20140050
CrossRef Google scholar
[169]
Weihs D, Fish F E, Nicastro A J. Mechanics of remora removal by dolphin spinning. Marine Mammal Science, 2007, 23(3): 707–714
CrossRef Google scholar
[170]
Gamel K M, Garner A M, Flammang B E. Bioinspired remora adhesive disc offers insight into evolution. Bioinspiration & Biomimetics, 2019, 14(5): 056014
CrossRef Google scholar
[171]
Beckert M, Flammang B E, Nadler J H. Remora fish suction pad attachment is enhanced by spinule friction. Journal of Experimental Biology, 2015, 218(22): 3551–3558
CrossRef Google scholar
[172]
Wang S Q, Li L, Chen Y F, Kenaley C, Wainwright D, Wood R J, Wen L. The detachment of remora: kinematics, dynamics, and a bio-robotic model. In: Proceedings of Annual Meeting of Society of Integrative Orgasmic Biology. Tampa: Society for Integrative and Comparative Biology, 2019, 59: E241–E241
[173]
Fulcher B A, Motta P J. Suction disk performance of echeneid fishes. Canadian Journal of Zoology, 2006, 84(1): 42–50
CrossRef Google scholar
[174]
Wang S Q, Li L, Chen Y F, Wang Y P, Sun W G, Xiao J F, Wainwright D. Wang T M, Wood R J, Wen L. A bio-robotic remora disc with attachment and detachment capabilities for reversible underwater hitchhiking. In: Proceedings of 2019 IEEE International Conference on Robotics and Automation. New York: IEEE, 2019, 4653–4659
CrossRef Google scholar
[175]
Ditsche P, Wainwright D K, Summers A P. Attachment to challenging substrates-fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). Journal of Experimental Biology, 2014, 217(14): 2548–2554
CrossRef Google scholar
[176]
Wainwright D K, Kleinteich T, Kleinteich A, Gorb S N, Summers A P. Stick tight: suction adhesion on irregular surfaces in the northern clingfish. Biology Letters, 2013, 9(3): 20130234
CrossRef Google scholar
[177]
DitscheP, Summers A. Learning from northern clingfish (Gobiesox maeandricus): bioinspired suction cups attach to rough surfaces. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1784): 20190204
[178]
Wang J R, Ji C, Wang W, Zou J, Yang H Y, Pan M. An adhesive locomotion model for the rock-climbing fish, beaufortia kweichowensis. Scientific Reports, 2019, 9(1): 16571
CrossRef Google scholar
[179]
Kim S, Asbeck A T, Cutkosky M R, Provancher W R. SpinybotII: climbing hard walls with compliant microspines. In: Proceedings of the 12th International Conference on Advanced Robotics (ICAR’05). Seattle: IEEE, 2005, 601–606
CrossRef Google scholar
[180]
Gerstner C L. Effect of oral suction and other friction-enhancing behaviors on the station-holding performance of suckermouth catfish (Hypostomus spp.). Canadian Journal of Zoology, 2007, 85(1): 133–140
CrossRef Google scholar
[181]
Follador M, Tramacere F, Mazzolai B. Dielectric elastomer actuators for octopus inspired suction cups. Bioinspiration & Biomimetics, 2014, 9(4): 046002
CrossRef Google scholar
[182]
Hu B S, Wang L W, Fu Z, Zhao Y Z. Bio-inspired miniature suction cups actuated by shape memory alloy. International Journal of Advanced Robotic Systems, 2009, 6(3): 151–160
CrossRef Google scholar
[183]
Wang S H, Luo H Y, Linghu C H, Song J Z. Elastic energy storage enabled magnetically actuated, octopus-inspired smart adhesive. Advanced Functional Materials, 2021, 31(9): 2009217
CrossRef Google scholar
[184]
Mazzolai B, Mondini A, Tramacere F, Riccomi G, Sadeghi A, Giordano G, Del Dottore E, Scaccia M, Zampato M, Carminati S. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Advanced Intelligent Systems, 2019, 1(6): 1900041
CrossRef Google scholar
[185]
Tang Y C, Zhang Q T, Lin G J, Yin J. Switchable adhesion actuator for amphibious climbing soft robot. Soft Robotics, 2018, 5(5): 592–600
CrossRef Google scholar
[186]
Sholl N, Moss A, Kier W M, Mohseni K. A soft end effector inspired by cephalopod suckers and augmented by a dielectric elastomer actuator. Soft Robotics, 2019, 6(3): 356–367
CrossRef Google scholar
[187]
Xie Z X, Domel A G, An N, Green C, Gong Z Y, Wang T M, Knubben E M, Weaver J C, Bertoldi K, Wen L. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robotics, 2020, 7(5): 639–648
CrossRef Google scholar
[188]
Asbeck A, Dastoor S, Parness A, Fullerton L, Esparza N, Soto D, Heyneman B, Cutkosky M. Climbing rough vertical surfaces with hierarchical directional adhesion. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009, 2675–2680
CrossRef Google scholar
[189]
Patil S, Mangal R, Malasi A, Sharma A. Biomimetic wet adhesion of viscoelastic liquid films anchored on micropatterned elastic substrates. Langmuir, 2012, 28(41): 14784–14791
CrossRef Google scholar
[190]
Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007, 448(7151): 338–341
CrossRef Google scholar
[191]
Liu J F, Xu L S, Chen S Q, Xu H, Cheng G X, Xu J J. Development of a bio-inspired wall-climbing robot composed of spine wheels, adhesive belts and eddy suction cup. Robotica, 2021, 39(1): 3–22
CrossRef Google scholar
[192]
Daltorio K A, Wei T E, Gorb S N, Ritzmann R E, Quinn R D. Passive foot design and contact area analysis for climbing mini-whegs. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007, 1274–1279
CrossRef Google scholar
[193]
Wang B C, Xiong X F, Duan J J, Wang Z Y, Dai Z D. Compliant detachment of wall-climbing robot unaffected by adhesion state. Applied Sciences, 2021, 11(13): 5860
CrossRef Google scholar
[194]
Provancher W R, Jensen-Segal S I, Fehlberg M A. ROCR: an energy-efficient dynamic wall-climbing robot. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 897–906
CrossRef Google scholar
[195]
Austin M P, Brown J M, Young C A, Clark J E. Leg design to enable dynamic running and climbing on BOBCAT. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018, 3799–3806
CrossRef Google scholar
[196]
Cutkosky M R. Climbing with adhesion: from bioinspiration to biounderstanding. Interface Focus, 2015, 5(4): 20150015
CrossRef Google scholar
[197]
Ji A H, Zhao Z H, Manoonpong P, Wang W, Chen G M, Dai Z D. A bio-inspired climbing robot with flexible pads and claws. Journal of Bionics Engineering, 2018, 15(2): 368–378
CrossRef Google scholar
[198]
Bian S Y, Wei Y L, Xu F, Kong D Y. A four-legged wall-climbing robot with spines and miniature setae array inspired by Longicorn and Gecko. Journal of Bionics Engineering, 2021, 18(2): 292–305
CrossRef Google scholar
[199]
Goldman D I, Chen T S, Dudek D M, Full R J. Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology, 2006, 209(15): 2990–3000
CrossRef Google scholar
[200]
Raibert M, Chepponis M, Brown H. Running on four legs as though they were one. IEEE Journal on Robotics and Automation, 1986, 2(2): 70–82
CrossRef Google scholar
[201]
Hutter M, Sommer H, Gehring C, Hoepflinger M, Bloesch M, Siegwart R. Quadrupedal locomotion using hierarchical operational space control. The International Journal of Robotics Research, 2014, 33(8): 1047–1062
CrossRef Google scholar
[202]
Haomachai W, Shao D H, Wang W, Ji A H, Dai Z D, Manoonpong P. Lateral undulation of the bendable body of a gecko-inspired robot for energy-efficient inclined surface climbing. IEEE Robotics and Automation Letters, 2021, 6(4): 7917–7924
CrossRef Google scholar
[203]
Yang G Z, Bellingham J, Dupont P E, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson B J, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang Z L, Wood R. The grand challenges of Science Robotics. Science Robotics, 2018, 3(14): eaar7650
CrossRef Google scholar
[204]
ZhangP F, Wu Z X, MengY, DongH J, TanM, YuJ Z. Development and control of a bioinspired robotic remora for hitchhiking. IEEE/ASME Transactions on Mechatronics, 2021 (in press)
[205]
Liu H X, Huang Q, Zhang W M, Chen X C, Yu Z G, Meng L B, Bao L, Ming A G, Huang Y, Hashimoto K, Takanishi A. Cat-inspired mechanical design of self-adaptive toes for a legged robot. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016, 2425–2430
CrossRef Google scholar

Nomenclature

Abbreviations
AR Aspect ratio
AUV Autonomous underwater vehicle
BL Body length per second moved
CPG Central pattern generator
DC Direct current
DEA Dielectric elastomer actuator
DOF Degree of freedom
IMU Inertial measurement unit
IR Infrared ray
JPL Jet Propulsion Laboratory
MSAMS Mushroom-shaped adhesive microstructure
PDMS Polydimethylsiloxane
PMMA Polymethyl methacrylate
PS Polystyrene
PU Polyurethane
PUA Polyurethane acrylate
PVS Polyvinyl siloxane
QDD Quasi-direct drive
RCM Remote center-of-motion
SDM Shape deposition manufacturing
SEA Serial elastic actuator
SMA Shape memory alloy
VMC Virtual model control
WBC Whole-body control
Variables
A Hamaker constant
d Normalized separation in the multiple wet adhesion model
D Separation distance between the two surfaces
f Normalized total force in the multiple wet adhesion model
F Shear force along the attached substrate in Fig.13(a)
Fa Force per area between two planar surfaces in van der Waals force model
Fcap Capillarity force
Fhyd Hydrodynamic force
Fn Multiple wet adhesion
h Height of the liquid film
hasp Depth of the center of the asperity as shown in Fig.13(a)
n Number of small drops
rs Radius of the microspine
rtip Radius of the claw tip
R Radius of the contact unit in wet adhesion model
Rasp Radius of the asperity in Fig.13(a)
s Scale factor in the multiple wet adhesion model
t Separating time of the two surfaces in wet adhesion model
V Volume of one large liquid droplet
W Weight acting on the claw directed normal of the attached surface
α Angle as shown in Fig.13(a)
θ1, θ2 Contact angles of the liquid film with contact unit and the surface respectively in Fig. 8
θload Angle between the surface and the direction of external force
θmin Critical attachment angle between the attached surface and the claw
γ Surface tension
η Liquid viscosity
µ Friction coefficient between claw end and attached surface

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2019YFB1309600), and the National Natural Science Foundation of China (Grant Nos. 51775011 and 91748201).

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as appropriate credit is given to the original author(s) and source, a link to the Creative Commons license is provided, and the changes made are indicated.
The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Visit http://creativecommons.org/licenses/by/4.0/ to view a copy of this license.

RIGHTS & PERMISSIONS

2022 The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(16155 KB)

Accesses

Citations

Detail

Sections
Recommended

/