Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics

Kun XU , Peijin ZI , Xilun DING

Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 43

PDF (16155KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 43 DOI: 10.1007/s11465-022-0699-x
REVIEW ARTICLE
REVIEW ARTICLE

Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics

Author information +
History +
PDF (16155KB)

Abstract

Many organisms have attachment organs with excellent functions, such as adhesion, clinging, and grasping, as a result of biological evolution to adapt to complex living environments. From nanoscale to macroscale, each type of adhesive organ has its own underlying mechanisms. Many biological adhesive mechanisms have been studied and can be incorporated into robot designs. This paper presents a systematic review of reversible biological adhesive methods and the bioinspired attachment devices that can be used in robotics. The study discussed how biological adhesive methods, such as dry adhesion, wet adhesion, mechanical adhesion, and sub-ambient pressure adhesion, progress in research. The morphology of typical adhesive organs, as well as the corresponding attachment models, is highlighted. The current state of bioinspired attachment device design and fabrication is discussed. Then, the design principles of attachment devices are summarized in this article. The following section provides a systematic overview of climbing robots with bioinspired attachment devices. Finally, the current challenges and opportunities in bioinspired attachment research in robotics are discussed.

Graphical abstract

Keywords

adhesion / bioinspired attachment / biomimetic gripper / climbing robot

Cite this article

Download citation ▾
Kun XU, Peijin ZI, Xilun DING. Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics. Front. Mech. Eng., 2022, 17(3): 43 DOI:10.1007/s11465-022-0699-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681–685

[2]

Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19): 12252–12256

[3]

Tramacere F, Kovalev A, Kleinteich T, Gorb S N, Mazzolai B. Structure and mechanical properties of Octopus vulgaris suckers. Journal of the Royal Society Interface, 2014, 11(91): 20130816

[4]

Dai Z D, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). Journal of Experimental Biology, 2002, 205(16): 2479–2488

[5]

Voigt D, de Souza E J, Kovalev A, Gorb S. Inter- and intraspecific differences in leaf beetle attachment on rigid and compliant substrates. Journal of Zoology, 2019, 307(1): 1–8

[6]

Gorb S N. Biological attachment devices: exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2008, 366(1870): 1557–1574

[7]

Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10603–10606

[8]

Kesel A B, Martin A, Seidl T. Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. Journal of Experimental Biology, 2003, 206(16): 2733–2738

[9]

Niederegger S, Gorb S N. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. Journal of Comparative Physiology A, 2006, 192(11): 1223–1232

[10]

Gasparetto A, Seidl T, Vidoni R. A mechanical model for the adhesion of spiders to nominally flat surfaces. Journal of Bionics Engineering, 2009, 6(2): 135–142

[11]

Barnes W J P. Functional morphology and design constraints of smooth adhesive pads. MRS Bulletin, 2007, 32(6): 479–485

[12]

Wang Y P, Yang X B, Chen Y F, Wainwright D K, Kenaley C P, Gong Z Y, Liu Z M, Liu H, Guan J, Wang T M, Weaver J C, Wood R J, Wen L. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Science Robotics, 2017, 2(10): eaan8072

[13]

LiJ, GaoX S, FanN J, Li K J, Jiang Z H, Jiang Z J. Adsorption performance of sliding wall-climbing robot. Chinese Journal of Mechanical Engineering, 2010, 23(6): 733–741

[14]

Gao Y, Wei W, Wang X M, Li Y J, Wang D L, Yu Q D. Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Applied Intelligence, 2021, 51(8): 5506–5524

[15]

Geissmann L, Denuder M, Keusch D, Pfirter L, Röthlisberger D, Ritter M, Thoma P, Siegwart R, Fischer W, Caprari G, Weber J, Beardsley P. Paraswift—a hybrid climbing and base jumping robot for entertainment, In: Bidaud P, Tokhi M O, Grand C, Virk G S, eds. Field Robotics. Paris: World Scientific, 2012, 397–406

[16]

Schmidt D, Berns K. Climbing robots for maintenance and inspections of vertical structures—a survey of design aspects and technologies. Robotics and Autonomous Systems, 2013, 61(12): 1288–1305

[17]

KimSSpenkoM TrujilloSHeyneman BMattoliVCutkoskyM R. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007, 1268–1273

[18]

Spenko M J, Haynes G C, Saunders J A, Cutkosky M R, Rizzi A A, Full R J, Koditschek D E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robotics, 2008, 25(4–5): 223–242

[19]

Parness A, Frost M, Thatte N, King J P, Witkoe K, Nevarez M, Garrett M, Aghazarian H, Kennedy B. Gravity-independent rock-climbing robot and a sample acquisition tool with microspine grippers. Journal of Field Robotics, 2013, 30(6): 897–915

[20]

Chu Z Y, Wang C, Hai X, Deng J, Cui J, Sun L N. Analysis and measurement of adhesive behavior for gecko-inspired synthetic microwedge structure. Advanced Materials Interfaces, 2019, 6(12): 1900283

[21]

Wang Z Z. Slanted functional gradient micropillars for optimal bioinspired dry adhesion. ACS Nano, 2018, 12(2): 1273–1284

[22]

Sandoval J A, Jadhav S, Quan H, Deheyn D D, Tolley M T. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc. Bioinspiration & Biomimetics, 2019, 14(6): 066016

[23]

Yang X, Tan R, Lu H J, Shen Y J. Starfish inspired milli soft robot with omnidirectional adaptive locomotion ability. IEEE Robotics and Automation Letters, 2021, 6(2): 3325–3332

[24]

Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 2008, 24(1): 65–74

[25]

Parness A, Abcouwer N, Fuller C, Wiltsie N, Nash J, Kennedy B. LEMUR 3: A limbed climbing robot for extreme terrain mobility in space. In: Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017, 5467–5473

[26]

Santos D, Heyneman K, Kim S, Esparza N, Cutkosky M R. Gecko-inspired climbing behaviors on vertical and overhanging surfaces. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 1125–1131

[27]

Lam T L, Xu Y S. Climbing strategy for a flexible tree climbing robot-treebot. IEEE Transactions on Robotics, 2011, 27(6): 1107–1117

[28]

Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10603–10606

[29]

Ji A H, Han L B, Dai Z D. Adhesive contact in animal: morphology, mechanism and bio-inspired application. Journal of Bionics Engineering, 2011, 8(4): 345–356

[30]

IsraelachviliJ N. Intermolecular and Surface Forces. 3rd ed. Washington: Academic Press, 2011

[31]

Tian Y, Pesika N, Zeng H B, Rosenberg K, Zhao B X, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51): 19320–19325

[32]

Majidi C, O’Reilly O M, Williams J A. On the stability of a rod adhering to a rigid surface: shear-induced stable adhesion and the instability of peeling. Journal of the Mechanics and Physics of Solids, 2012, 60(5): 827–843

[33]

Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 2002, 42(6): 1081–1090

[34]

Autumn K. Gecko adhesion: structure, function, and applications. MRS Bulletin, 2007, 32(6): 473–478

[35]

Kwak J S, Kim T W. A review of adhesion and friction models for gecko feet. International Journal of Precision Engineering and Manufacturing, 2010, 11(1): 171–186

[36]

Chen B, Wu P D, Gao H. Hierarchical modelling of attachment and detachment mechanisms of gecko toe adhesion. Proceedings of Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2094): 1639–1652

[37]

FederleW. Why are so many adhesive pads hairy? Journal of Experimental Biology, 2006, 209(14): 2611–2621

[38]

Hansen W R, Autumn K. Evidence for self-cleaning in gecko setae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 385–389

[39]

Hu S H, Lopez S, Niewiarowski P H, Xia Z H. Dynamic self-cleaning in gecko setae via digital hyperextension. Journal of the Royal Society Interface, 2012, 9(76): 2781–2790

[40]

Xu Q, Wan Y Y, Hu T S H, Liu T X, Tao D S, Niewiarowski P H, Tian Y, Liu Y, Dai L M, Yang Y Q, Xia Z H. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015, 6(1): 8949

[41]

Li Y S, Krahn J, Menon C. Bioinspired dry adhesive materials and their application in robotics: a review. Journal of Bionic Engineering, 2016, 13(2): 181–199

[42]

Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: a new angle on gecko attachment. Journal of Experimental Biology, 2006, 209(18): 3569–3579

[43]

Gravish N, Wilkinson M, Autumn K. Frictional and elastic energy in gecko adhesive detachment. Journal of the Royal Society Interface, 2008, 5(20): 339–348

[44]

Hensel R, Moh K, Arzt E. Engineering micropatterned dry adhesives: from contact theory to handling applications. Advanced Functional Materials, 2018, 28(28): 1800865

[45]

Wang W, Liu Y, Xie Z W. Gecko-like dry adhesive surfaces and their applications: a review. Journal of Bionics Engineering, 2021, 18(5): 1011–1044

[46]

Spolenak R, Gorb S, Arzt E. Adhesion design maps for bio-inspired attachment systems. Acta Biomaterialia, 2005, 1(1): 5–13

[47]

Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Microfabricated adhesive mimicking gecko foot-hair. Nature Materials, 2003, 2(7): 461–463

[48]

Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 2003, 17(8): 1055–1073

[49]

Glassmaker N J, Jagota A, Hui C Y, Kim J. Design of biomimetic fibrillar interfaces: 1. making contact. Journal of the Royal Society Interface, 2004, 1(1): 23–33

[50]

Hui C Y, Glassmaker N J, Tang T, Jagota A. Design of biomimetic fibrillar interfaces: 2. mechanics of enhanced adhesion. Journal of the Royal Society Interface, 2004, 1(1): 35–48

[51]

Murphy M P, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small, 2009, 5(2): 170–175

[52]

Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. Journal of Micromechanics and Microengineering, 2009, 19(11): 115002

[53]

Krahn J, Liu Y, Sadeghi A, Menon C. A tailless timing belt climbing platform utilizing dry adhesives with mushroom caps. Smart Materials and Structures, 2011, 20(11): 115021

[54]

Breckwoldt W A, Daltorio K A, Heepe L, Horchler A D, Gorb S N, Quinn R D. Walking inverted on ceilings with wheel-legs and micro-structured adhesives. In: Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2015, 3308–3313

[55]

Yu Z W, Shi Y, Xie J X, Yang S X, Dai Z D. Design and analysis of a bionic adhesive foot for gecko robot climbing the ceiling. International Journal of Robotics and Automation, 2018, 33(4): 445–454

[56]

Parness A, Soto D, Esparza N, Gravish N, Wilkinson M, Autumn K, Cutkosky M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. Journal of the Royal Society Interface, 2009, 6(41): 1223–1232

[57]

Jiang H, Hawkes E W, Fuller C, Estrada M A, Suresh S A, Abcouwer N, Han A K, Wang S Q, Ploch C J, Parness A, Cutkosky M R. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2017, 2(7): eaan4545

[58]

Alizadehyazdi V, Bonthron M, Spenko M. An electrostatic/gecko-inspired adhesives soft robotic gripper. IEEE Robotics and Automation Letters, 2020, 5(3): 4679–4686

[59]

Hossfeld C K, Schneider A S, Arzt E, Frick C P. Detachment behavior of mushroom-shaped fibrillar adhesive surfaces in peel testing. Langmuir, 2013, 29(49): 15394–15404

[60]

Heepe L, Kovalev A E, Filippov A E, Gorb S N. Adhesion failure at 180000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Physical Review Letters, 2013, 111(10): 104301

[61]

del Campo A, Greiner C, Alvarez I, Arzt E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Advanced Materials, 2007, 19(15): 1973–1977

[62]

Gorb S, Varenberg M, Peressadko A, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. Journal of the Royal Society Interface, 2007, 4(13): 271–275

[63]

Davies J, Haq S, Hawke T, Sargent J P. A practical approach to the development of a synthetic Gecko tape. International Journal of Adhesion and Adhesives, 2009, 29(4): 380–390

[64]

Lee D Y, Lee D H, Lee S G, Cho K. Hierarchical gecko-inspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter, 2012, 8(18): 4905–4910

[65]

Li X S, Tao D S, Lu H, Bai P, Liu Z, Ma L, Meng Y, Tian Y. Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surface Topography: Metrology and Properties, 2019, 7(2): 023001

[66]

Murphy M P, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Applied Materials & Interfaces, 2009, 1(4): 849–855

[67]

Wang Y, Hu H, Shao J Y, Ding Y C. Fabrication of well-defined mushroom-shaped structures for biomimetic dry adhesive by conventional photolithography and molding. ACS Applied Materials & Interfaces, 2014, 6(4): 2213–2218

[68]

Wang Y, Tian H M, Shao J Y, Sameoto D, Li X M, Wang L, Hu H, Ding Y C, Lu B H. Switchable dry adhesion with step-like micropillars and controllable interfacial contact. ACS Applied Materials & Interfaces, 2016, 8(15): 10029–10037

[69]

Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5639–5644

[70]

Brodoceanu D, Bauer C T, Kroner E, Arzt E, Kraus T. Hierarchical bioinspired adhesive surfaces—a review. Bioinspiration & Biomimetics, 2016, 11(5): 051001

[71]

Greiner C, Arzt E, del Campo A. Hierarchical gecko-like adhesives. Advanced Materials, 2009, 21(4): 479–482

[72]

Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews, 2013, 7(1): 22–44

[73]

Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir, 2008, 24(19): 10587–10591

[74]

Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 2012, 42: 231–263

[75]

Gillies A G, Puthoff J, Cohen M J, Autumn K, Fearing R S. Dry self-cleaning properties of hard and soft fibrillar structures. ACS Applied Materials & Interfaces, 2013, 5(13): 6081–6088

[76]

Mengüç Y, Röhrig M, Abusomwan U, Hölscher H, Sitti M. Staying sticky: contact self-cleaning of gecko-inspired adhesives. Journal of the Royal Society, Interface, 2014, 11(94): 20131205

[77]

Jagdheesh R, Diaz M, Ocana J L. Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing. RSC Advances, 2016, 6(77): 72933–72941

[78]

Bovero E, Krahn J, Menon C. Fabrication and testing of self cleaning dry adhesives utilizing hydrophobicity gradient. Journal of Bionics Engineering, 2015, 12(2): 270–275

[79]

Kwak M K, Jeong H E, Suh K Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Advanced Materials, 2011, 23(34): 3949–3953

[80]

Henrey M, Ahmed A, Boscariol P, Shannon L, Menon C. Abigaille-III: a versatile, bioinspired hexapod for scaling smooth vertical surfaces. Journal of Bionics Engineering, 2014, 11(1): 1–17

[81]

Liu Y H, Seo T W. AnyClimb-II: dry-adhesive linkage-type climbing robot for uneven vertical surfaces. Mechanism and Machine Theory, 2018, 124: 197–210

[82]

Unver O, Uneri A, Aydemir A, Sitti M. Geckobot: a gecko inspired climbing robot using elastomer adhesives. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006, 2329–2335

[83]

Ko H, Yi H, Jeong H E. Wall and ceiling climbing quadruped robot with superior water repellency manufactured using 3D printing (UNIclimb). International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3): 273–280

[84]

Shao D H, Chen J, Ji A H, Dai Z D, Manoonpong P. Hybrid soft-rigid foot with dry adhesive material designed for a gecko-inspired climbing robot. In: Proceedings of 2020 the 3rd IEEE International Conference on Soft Robotics. New Haven: IEEE, 2020, 578–585

[85]

Birkmeyer P, Gillies A G, Fearing R S. Dynamic climbing of near-vertical smooth surfaces. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012, 286–292

[86]

Li Y S, Ahmed A, Sameoto D, Menon C. Abigaille II: toward the development of a spider-inspired climbing robot. Robotica, 2012, 30(1): 79–89

[87]

Liu Y H, Kim H G, Seo T W. AnyClimb: a new wall-climbing robotic platform for various curvatures. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 1812–1821

[88]

Murphy M P, Sitti M. Waalbot: an agile small-scale wall-climbing robot utilizing dry elastomer adhesives. IEEE/ASME Transactions on Mechatronics, 2007, 12(3): 330–338

[89]

Lee G, Kim H, Seo K, Kim J, Sitti M, Seo T W. Series of multilinked caterpillar track-type climbing robots. Journal of Field Robotics, 2016, 33(6): 737–750

[90]

Murphy M P, Kute C, Mengüç Y, Sitti M. Waalbot II: adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. The International Journal of Robotics Research, 2011, 30(1): 118–133

[91]

Dharmawan A G, Xavier P, Hariri H H, Soh G S, Baji A, Bouffanais R, Foong S H, Low H Y, Wood K L. Design, modeling, and experimentation of a bio-inspired miniature climbing robot with bilayer dry adhesives. Journal of Mechanisms and Robotics, 2019, 11(2): 020902

[92]

Unver O, Sitti M. Tankbot: a palm-size, tank-like climbing robot using soft elastomer adhesive treads. The International Journal of Robotics Research, 2010, 29(14): 1761–1777

[93]

Song S, Drotlef D M, Majidi C, Sitti M. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(22): E4344–E4353

[94]

Glick P, Suresh S A, Ruffatto D, Cutkosky M, Tolley M T, Parness A. A soft robotic gripper with gecko-inspired adhesive. IEEE Robotics and Automation Letters, 2018, 3(2): 903–910

[95]

Hashizume J, Huh T M, Suresh S A, Cutkosky M R. Capacitive sensing for a gripper with gecko-inspired adhesive film. IEEE Robotics and Automation Letters, 2019, 4(2): 677–683

[96]

Ruotolo W, Brouwer D, Cutkosky M R. From grasping to manipulation with gecko-inspired adhesives on a multifinger gripper. Science Robotics, 2021, 6(61): eabi9773

[97]

Dadkhah M, Zhao Z Y, Wettels N, Spenko M. A self-aligning gripper using an electrostatic/gecko-like adhesive. In: Proceeding of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016, 1006–1011

[98]

Hawkes E W, Jiang H, Cutkosky M R. Three-dimensional dynamic surface grasping with dry adhesion. The International Journal of Robotics Research, 2016, 35(8): 943–958

[99]

Hao Y F, Biswas S, Hawkes E W, Wang T M, Zhu M J, Wen L, Visell Y. A multimodal, enveloping soft gripper: shape conformation, bioinspired adhesion, and expansion-driven suction. IEEE Transactions on Robotics, 2021, 37(2): 350–362

[100]

Hu Q Q, Dong E B, Sun D. Soft gripper design based on the integration of flat dry adhesive, soft actuator, and microspine. IEEE Transactions on Robotics, 2021, 37(4): 1065–1080

[101]

Niederegger S, Gorb S. Tarsal movements in flies during leg attachment and detachment on a smooth substrate. Journal of Insect Physiology, 2003, 49(6): 611–620

[102]

Persson B N J. Wet adhesion with application to tree frog adhesive toe pads and tires. Journal of Physics Condensed Matter, 2007, 19(37): 376110

[103]

Scholz I, Barnes W J P, Smith J M, Baumgartner W. Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. Journal of Experimental Biology, 2009, 212(2): 155–162

[104]

He B, Wang Z B, Li M H, Wang K, Shen R J, Hu S Q. Wet adhesion inspired bionic climbing robot. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 312–320

[105]

Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370(1661): 20140027

[106]

SlaterD M, Vogel M J, MacnerA M, SteenP H. Beetle-inspired adhesion by capillary-bridge arrays: pull-off detachment. Journal of Adhesion Science and Technology, 2014, 28(3–4): 273–289

[107]

De Souza E J, Brinkmann M, Mohrdieck C, Arzt E. Enhancement of capillary forces by multiple liquid bridges. Langmuir, 2008, 24(16): 8813–8820

[108]

Crawford N, Endlein T, Barnes W J P. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. Journal of Experimental Biology, 2012, 215(22): 3965–3972

[109]

Tulchinsky A, Gat A D. Viscous-poroelastic interaction as mechanism to create adhesion in frogs’ toe pads. Journal of Fluid Mechanics, 2015, 775: 288–303

[110]

Chen Y P, Meng J X, Gu Z, Wan X Z, Jiang L, Wang S T. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Advanced Functional Materials, 2020, 30(5): 1905287

[111]

Zhang C, Wu B H, Zhou Y S, Zhou F, Liu W M, Wang Z K. Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49(11): 3605–3637

[112]

Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. Advanced Materials, 2013, 25(5): 653–701

[113]

Huang J W, Liu Y, Yang Y X, Zhou Z J, Mao J, Wu T, Cai Q P, Peng C H, Xu Y T, Zeng B R, Luo W A, Chen G R, Yuan C H, Dai L Z. Electrically programmable adhesive hydrogels for climbing robots. Science Robotics, 2021, 6(53): eabe1858

[114]

Chen H W, Zhang L W, Zhang D Y, Zhang P F, Han Z W. Bioinspired surface for surgical graspers based on the strong wet friction of tree frog toe pads. ACS Applied Materials & Interfaces, 2015, 7(25): 13987–13995

[115]

Ko H, Seong M, Jeong H E. A micropatterned elastomeric surface with enhanced frictional properties under wet conditions and its application. Soft Matter, 2017, 13(45): 8419–8425

[116]

Vogel M J, Steen P H. Capillarity-based switchable adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3377–3381

[117]

Meng F D, Liu Q, Wang X, Tan D, Xue L J, Barnes W J P. Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2019, 377(2150): 20190131

[118]

Iturri J, Xue L J, Kappl M, García-Fernández L, Barnes W J P, Butt H J, del Campo A. Torrent frog-inspired adhesives: attachment to flooded surfaces. Advanced Functional Materials, 2015, 25(10): 1499–1505

[119]

Xie J, Li M, Dai Q W, Huang W, Wang X L. Key parameters of biomimetic patterned surface for wet adhesion. International Journal of Adhesion and Adhesives, 2018, 82: 72–78

[120]

Xue L J, Sanz B, Luo A Y, Turner K T, Wang X, Tan D, Zhang R, Du H, Steinhart M, Mijangos C, Guttmann M, Kappl M, del Campo A. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano, 2017, 11(10): 9711–9719

[121]

Drotlef D M, Stepien L, Kappl M, Barnes W J P, Butt H J, del Campo A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Advanced Functional Materials, 2013, 23(9): 1137–1146

[122]

Chen Y F, Doshi N, Wood R J. Inverted and inclined climbing using capillary adhesion in a quadrupedal insect-scale robot. IEEE Robotics and Automation Letters, 2020, 5(3): 4820–4827

[123]

Lee B P. Climbing robots in a sticky situation. Science Robotics, 2021, 6(53): eabh2682

[124]

Van Nguyen P, Ho V A. Grasping interface with wet adhesion and patterned morphology: case of thin shell. IEEE Robotics and Automation Letters, 2019, 4(2): 792–799

[125]

Suzuki K, Nemoto S, Fukuda T, Takanobu H, Miura H. Insect-inspired wall-climbing robots utilizing surface tension forces. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2010, 4(1): 383–390

[126]

Li M H, He B, Qin H Y, Zhou Y M, Lu H X, Yue J G. A wet adhesion inspired biomimetic pad with direction dependence and adaptability. Chinese Science Bulletin, 2011, 56(18): 1935–1941

[127]

Xin W C, Pan F T L, Li Y H, Chiu P W Y, Li Z. Design and modeling of a biomimetic gastropod-like soft robot with wet adhesive locomotion. In: Proceedings of 2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021, 11997–12003

[128]

Van Nguyen P, Luu Q K, Takamura Y, Ho V A. Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects. In: Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020, 9213–9219

[129]

Roderick W R, Chin D D, Cutkosky M R, Lentink D. Birds land reliably on complex surfaces by adapting their foot-surface interactions upon contact. eLife, 2019, 8: e46415

[130]

Zani P A. The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of Evolutionary Biology, 2000, 13(2): 316–325

[131]

Spenko M, Cutkosky M, Majidi C, Fearing R, Groff R, Autumn K. Foot design and integration for bioinspired climbing robots. In: Gerhart G R, Shoemaker C M, Gage D W, eds. Unmanned Systems Technology VIII. Bellingham: SPIE, 2006, 623019

[132]

Lam T L, Xu Y S. Biologically inspired tree-climbing robot with continuum maneuvering mechanism. Journal of Field Robotics, 2012, 29(6): 843–860

[133]

Sarmiento-Ponce E J, Sutcliffe M P F, Hedwig B. Substrate texture affects female cricket walking response to male calling song. Royal Society Open Science, 2018, 5(3): 172334

[134]

Frantsevich L, Gorb S. Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. Arthropod Structure & Development, 2004, 33(1): 77–89

[135]

Woodward M A, Sitti M. Morphological intelligence counters foot slipping in the desert locust and dynamic robots. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): E8358–E8367

[136]

Han L B, Wang Z Y, Ji A H, Dai Z D. Grip and detachment of locusts on inverted sandpaper substrates. Bioinspiration & Biomimetics, 2011, 6(4): 046005

[137]

Roderick W R, Cutkosky M R, Lentink D. Bird-inspired dynamic grasping and perching in arboreal environments. Science Robotics, 2021, 6(61): eabj7562

[138]

Pattrick J G, Labonte D, Federle W. Scaling of claw sharpness: mechanical constraints reduce attachment performance in larger insects. Journal of Experimental Biology, 2018, 221(24): jeb188391

[139]

Asbeck A T, Kim S, Cutkosky M R, Provancher W R, Lanzetta M. Scaling hard vertical surfaces with compliant microspine arrays. The International Journal of Robotics Research, 2006, 25(12): 1165–1179

[140]

Lee J S, Plecnik M, Yang J H, Fearing R S. Self-engaging spined gripper with dynamic penetration and release for steep jumps. In: Proceedings of 2018 IEEE international conference on robotics and automation. Brisbane: IEEE, 2018, 6082–6089

[141]

Liu Y W, Sun S M, Wu X, Mei T. A wheeled wall-climbing robot with bio-inspired spine mechanisms. Journal of Bionics Engineering, 2015, 12(1): 17–28

[142]

Wang S Q, Jiang H, Cutkosky M R. Design and modeling of linearly-constrained compliant spines for human-scale locomotion on rocky surfaces. The International Journal of Robotics Research, 2017, 36(9): 985–999

[143]

Sintov A, Avramovich T, Shapiro A. Design and motion planning of an autonomous climbing robot with claws. Robotics and Autonomous Systems, 2011, 59(11): 1008–1019

[144]

Brown J M, Austin M P, Miller B D, Clark J E. Evidence for multiple dynamic climbing gait families. Bioinspiration & Biomimetics, 2019, 14(3): 036001

[145]

Weiss L E, Merz R, Prinz F B, Neplotnik G, Padmanabhan P, Schultz L, Ramaswami K. Shape deposition manufacturing of heterogeneous structures. Journal of Manufacturing Systems, 1997, 16(4): 239–248

[146]

Lynch G A, Clark J E, Lin P C, Koditschek D E. A bioinspired dynamical vertical climbing robot. The International Journal of Robotics Research, 2012, 31(8): 974–996

[147]

Hu Q Q, Dong E B, Cheng G, Jin H, Yang J, Sun D. Inchworm-inspired soft climbing robot using microspine arrays. In: Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao: IEEE, 2019, 5800–5805

[148]

Liu Y W, Wang L M, Niu F Z, Li P Y, Li Y, Mei T. A track-type inverted climbing robot with bio-inspired spiny grippers. Journal of Bionics Engineering, 2020, 17(5): 920–931

[149]

Carpenter K, Wiltsie N, Parness A. Rotary microspine rough surface mobility. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2378–2390

[150]

Backus S B, Onishi R, Bocklund A, Berg A, Contreras E D, Parness A. Design and testing of the JPL-Nautilus gripper for deep-ocean geological sampling. Journal of Field Robotics, 2020, 37(6): 972–986

[151]

Xu F Y, Wang B, Shen J J, Hu J L, Jiang G P. Design and realization of the claw gripper system of a climbing robot. Journal of Intelligent & Robotic Systems, 2018, 89(3): 301–317

[152]

Su M J, Guan Y S, Huang D Y, Zhu H F. Modeling and analysis of a passively adaptive soft gripper with the bio-inspired compliant mechanism. Bioinspiration & Biomimetics, 2021, 16(5): 055001

[153]

Uckert K, Parness A, Chanover N, Eshelman E J, Abcouwer N, Nash J, Detry R, Fuller C, Voelz D, Hull R, Flannery D, Bhartia R, Manatt K S, Abbey W J, Boston P. Investigating habitability with an integrated rock-climbing robot and astrobiology instrument suite. Astrobiology, 2020, 20(12): 1427–1449

[154]

Kwasi Boohene A N, Newill-Smith D, Trieu T, Stengel R F. Prototype for an asteroid exploratory robot using multi-phalanx microspine grippers. In: Proceedings of AIAA SPACE Conference and Exposition. Reston: AIAA, 2015, 4585

[155]

Nagaoka K, Minote H, Maruya K, Shirai Y, Yoshida K, Hakamada T, Sawada H, Kubota T. Passive spine gripper for free-climbing robot in extreme terrain. IEEE Robotics and Automation Letters, 2018, 3(3): 1765–1770

[156]

Uno K, Takada N, Okawara T, Haji K, Candalot A, Ribeiro W F R, Nagaoka K, Yoshida K. Hubrobo: a lightweight multi-limbed climbing robot for exploration in challenging terrain. In: Proceedings of 2020 IEEE-RAS the 20th International Conference on Humanoid Robots (Humanoids). Munich: IEEE, 2021, 209–215

[157]

Jiang H, Wang S Q, Cutkosky M R. Stochastic models of compliant spine arrays for rough surface grasping. The International Journal of Robotics Research, 2018, 37(7): 669–687

[158]

Wang S Q, Jiang H, Myung Huh T, Sun D N, Ruotolo W, Miller M, Roderick W R T, Stuart H S, Cutkosky M R. Spinyhand: contact load sharing for a human-scale climbing robot. Journal of Mechanisms and Robotics, 2019, 11(3): 031009

[159]

Ruotolo W, Roig F S, Cutkosky M R. Load-sharing in soft and spiny paws for a large climbing robot. IEEE Robotics and Automation Letters, 2019, 4(2): 1439–1446

[160]

Xu F Y, Meng F C, Jiang Q S, Peng G L. Grappling claws for a robot to climb rough wall surfaces: mechanical design, grasping algorithm, and experiments. Robotics and Autonomous Systems, 2020, 128: 103501

[161]

Tavakoli M, Marjovi A, Marques L, de Almeida A T. 3DCLIMBER: a climbing robot for inspection of 3D human made structures. In: Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008, 4130–4135

[162]

Guan Y S, Jiang L, Zhu H F, Wu W Q, Zhou X F, Zhang H, Zhang X M. Climbot: a bio-inspired modular biped climbing robot—system development, climbing gaits, and experiments. Journal of Mechanisms and Robotics, 2016, 8(2): 021026

[163]

Liu Y Y, Lam T L, Qian H H, Xu Y S. Design and analysis of gripper with retractable spine for tree climbing robots. In: Proceedings of 2014 IEEE International Conference on Information and Automation. Hailar: IEEE, 2014, 350–355

[164]

Tramacere F, Beccai L, Sinibaldi E, Laschi C, Mazzolai B. Adhesion mechanisms inspired by octopus suckers. Procedia Computer Science, 2011, 7: 192–193

[165]

Kier W M, Smith A M. The morphology and mechanics of octopus suckers. Biological Bulletin, 1990, 178(2): 126–136

[166]

Kier W M, Smith A M. The structure and adhesive mechanism of octopus suckers. Integrative and Comparative Biology, 2002, 42(6): 1146–1153

[167]

Tramacere F, Beccai L, Mattioli F, Sinibaldi E, Mazzolai B. Artificial adhesion mechanisms inspired by octopus suckers. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012, 3846–3851

[168]

Tramacere F, Pugno N M, Kuba M J, Mazzolai B. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus, 2015, 5(1): 20140050

[169]

Weihs D, Fish F E, Nicastro A J. Mechanics of remora removal by dolphin spinning. Marine Mammal Science, 2007, 23(3): 707–714

[170]

Gamel K M, Garner A M, Flammang B E. Bioinspired remora adhesive disc offers insight into evolution. Bioinspiration & Biomimetics, 2019, 14(5): 056014

[171]

Beckert M, Flammang B E, Nadler J H. Remora fish suction pad attachment is enhanced by spinule friction. Journal of Experimental Biology, 2015, 218(22): 3551–3558

[172]

Wang S Q, Li L, Chen Y F, Kenaley C, Wainwright D, Wood R J, Wen L. The detachment of remora: kinematics, dynamics, and a bio-robotic model. In: Proceedings of Annual Meeting of Society of Integrative Orgasmic Biology. Tampa: Society for Integrative and Comparative Biology, 2019, 59: E241–E241

[173]

Fulcher B A, Motta P J. Suction disk performance of echeneid fishes. Canadian Journal of Zoology, 2006, 84(1): 42–50

[174]

Wang S Q, Li L, Chen Y F, Wang Y P, Sun W G, Xiao J F, Wainwright D. Wang T M, Wood R J, Wen L. A bio-robotic remora disc with attachment and detachment capabilities for reversible underwater hitchhiking. In: Proceedings of 2019 IEEE International Conference on Robotics and Automation. New York: IEEE, 2019, 4653–4659

[175]

Ditsche P, Wainwright D K, Summers A P. Attachment to challenging substrates-fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). Journal of Experimental Biology, 2014, 217(14): 2548–2554

[176]

Wainwright D K, Kleinteich T, Kleinteich A, Gorb S N, Summers A P. Stick tight: suction adhesion on irregular surfaces in the northern clingfish. Biology Letters, 2013, 9(3): 20130234

[177]

DitscheP, Summers A. Learning from northern clingfish (Gobiesox maeandricus): bioinspired suction cups attach to rough surfaces. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1784): 20190204

[178]

Wang J R, Ji C, Wang W, Zou J, Yang H Y, Pan M. An adhesive locomotion model for the rock-climbing fish, beaufortia kweichowensis. Scientific Reports, 2019, 9(1): 16571

[179]

Kim S, Asbeck A T, Cutkosky M R, Provancher W R. SpinybotII: climbing hard walls with compliant microspines. In: Proceedings of the 12th International Conference on Advanced Robotics (ICAR’05). Seattle: IEEE, 2005, 601–606

[180]

Gerstner C L. Effect of oral suction and other friction-enhancing behaviors on the station-holding performance of suckermouth catfish (Hypostomus spp.). Canadian Journal of Zoology, 2007, 85(1): 133–140

[181]

Follador M, Tramacere F, Mazzolai B. Dielectric elastomer actuators for octopus inspired suction cups. Bioinspiration & Biomimetics, 2014, 9(4): 046002

[182]

Hu B S, Wang L W, Fu Z, Zhao Y Z. Bio-inspired miniature suction cups actuated by shape memory alloy. International Journal of Advanced Robotic Systems, 2009, 6(3): 151–160

[183]

Wang S H, Luo H Y, Linghu C H, Song J Z. Elastic energy storage enabled magnetically actuated, octopus-inspired smart adhesive. Advanced Functional Materials, 2021, 31(9): 2009217

[184]

Mazzolai B, Mondini A, Tramacere F, Riccomi G, Sadeghi A, Giordano G, Del Dottore E, Scaccia M, Zampato M, Carminati S. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Advanced Intelligent Systems, 2019, 1(6): 1900041

[185]

Tang Y C, Zhang Q T, Lin G J, Yin J. Switchable adhesion actuator for amphibious climbing soft robot. Soft Robotics, 2018, 5(5): 592–600

[186]

Sholl N, Moss A, Kier W M, Mohseni K. A soft end effector inspired by cephalopod suckers and augmented by a dielectric elastomer actuator. Soft Robotics, 2019, 6(3): 356–367

[187]

Xie Z X, Domel A G, An N, Green C, Gong Z Y, Wang T M, Knubben E M, Weaver J C, Bertoldi K, Wen L. Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robotics, 2020, 7(5): 639–648

[188]

Asbeck A, Dastoor S, Parness A, Fullerton L, Esparza N, Soto D, Heyneman B, Cutkosky M. Climbing rough vertical surfaces with hierarchical directional adhesion. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009, 2675–2680

[189]

Patil S, Mangal R, Malasi A, Sharma A. Biomimetic wet adhesion of viscoelastic liquid films anchored on micropatterned elastic substrates. Langmuir, 2012, 28(41): 14784–14791

[190]

Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007, 448(7151): 338–341

[191]

Liu J F, Xu L S, Chen S Q, Xu H, Cheng G X, Xu J J. Development of a bio-inspired wall-climbing robot composed of spine wheels, adhesive belts and eddy suction cup. Robotica, 2021, 39(1): 3–22

[192]

Daltorio K A, Wei T E, Gorb S N, Ritzmann R E, Quinn R D. Passive foot design and contact area analysis for climbing mini-whegs. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007, 1274–1279

[193]

Wang B C, Xiong X F, Duan J J, Wang Z Y, Dai Z D. Compliant detachment of wall-climbing robot unaffected by adhesion state. Applied Sciences, 2021, 11(13): 5860

[194]

Provancher W R, Jensen-Segal S I, Fehlberg M A. ROCR: an energy-efficient dynamic wall-climbing robot. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 897–906

[195]

Austin M P, Brown J M, Young C A, Clark J E. Leg design to enable dynamic running and climbing on BOBCAT. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018, 3799–3806

[196]

Cutkosky M R. Climbing with adhesion: from bioinspiration to biounderstanding. Interface Focus, 2015, 5(4): 20150015

[197]

Ji A H, Zhao Z H, Manoonpong P, Wang W, Chen G M, Dai Z D. A bio-inspired climbing robot with flexible pads and claws. Journal of Bionics Engineering, 2018, 15(2): 368–378

[198]

Bian S Y, Wei Y L, Xu F, Kong D Y. A four-legged wall-climbing robot with spines and miniature setae array inspired by Longicorn and Gecko. Journal of Bionics Engineering, 2021, 18(2): 292–305

[199]

Goldman D I, Chen T S, Dudek D M, Full R J. Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology, 2006, 209(15): 2990–3000

[200]

Raibert M, Chepponis M, Brown H. Running on four legs as though they were one. IEEE Journal on Robotics and Automation, 1986, 2(2): 70–82

[201]

Hutter M, Sommer H, Gehring C, Hoepflinger M, Bloesch M, Siegwart R. Quadrupedal locomotion using hierarchical operational space control. The International Journal of Robotics Research, 2014, 33(8): 1047–1062

[202]

Haomachai W, Shao D H, Wang W, Ji A H, Dai Z D, Manoonpong P. Lateral undulation of the bendable body of a gecko-inspired robot for energy-efficient inclined surface climbing. IEEE Robotics and Automation Letters, 2021, 6(4): 7917–7924

[203]

Yang G Z, Bellingham J, Dupont P E, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson B J, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang Z L, Wood R. The grand challenges of Science Robotics. Science Robotics, 2018, 3(14): eaar7650

[204]

ZhangP F, Wu Z X, MengY, DongH J, TanM, YuJ Z. Development and control of a bioinspired robotic remora for hitchhiking. IEEE/ASME Transactions on Mechatronics, 2021 (in press)

[205]

Liu H X, Huang Q, Zhang W M, Chen X C, Yu Z G, Meng L B, Bao L, Ming A G, Huang Y, Hashimoto K, Takanishi A. Cat-inspired mechanical design of self-adaptive toes for a legged robot. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016, 2425–2430

AI Summary AI Mindmap
PDF (16155KB)

8068

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/