Development of a novel hand−eye calibration for intuitive control of minimally invasive surgical robot

Yanwen SUN , Bo PAN , Yili FU

Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 42

PDF (7577KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 42 DOI: 10.1007/s11465-022-0698-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Development of a novel hand−eye calibration for intuitive control of minimally invasive surgical robot

Author information +
History +
PDF (7577KB)

Abstract

Robotic-assisted surgical system has introduced a powerful platform through dexterous instrument and hand−eye coordination intuitive control. The knowledge of laparoscopic vision is a crucial piece of information for robot-assisted minimally invasive surgery focusing on improved surgical outcomes. Obtaining the transformation with respect to the laparoscope and robot slave arm frames using hand−eye calibration is essential, which is a key component for developing intuitive control algorithm. We proposed a novel two-step modified dual quaternion for hand−eye calibration in this study. The dual quaternion was exploited to solve the hand−eye calibration simultaneously and powered by an iteratively separate solution. The obtained hand−eye calibration result was applied to the intuitive control by using the hand−eye coordination criterion. Promising simulations and experimental studies were conducted to evaluate the proposed method on our surgical robot system. We extensively compared the proposed method with state-of-the-art methods. Results demonstrate this method can improve the calibration accuracy. The effectiveness of the intuitive control algorithm was quantitatively evaluated, and an improved hand−eye calibration method was developed. The relationship between laparoscope and robot kinematics can be established for intuitive control.

Graphical abstract

Keywords

minimally invasive surgery / hand−eye calibration / intuitive control / surgical robot / dual quaternion

Cite this article

Download citation ▾
Yanwen SUN, Bo PAN, Yili FU. Development of a novel hand−eye calibration for intuitive control of minimally invasive surgical robot. Front. Mech. Eng., 2022, 17(3): 42 DOI:10.1007/s11465-022-0698-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong F X, Wang Z R, Chen W, He K J, Wang Y Q, Liu Y H. Hand-eye calibration of surgical instrument for robotic surgery using interactive manipulation. IEEE Robotics and Automation Letters, 2020, 5(2): 1540–1547

[2]

Gao Y Q, Wang S X, Li J M, Li A M, Liu H B, Xing Y. Modeling and evaluation of hand‒eye coordination of surgical robotic system on task performance. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(4): e1829

[3]

Su H, Hu Y B, Karimi H R, Knoll A, Ferrigno G, Momi E D. Improved recurrent neural network-based manipulator control with remote center of motion constraints: experimental results. Neural Networks, 2020, 131: 291–299

[4]

Zhang W, Li H Y, Cui L L, Li H Y, Zhang X Y, Fang S X, Zhang Q J. Research progress and development trend of surgical robot and surgical instrument arm. The International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17(5): e2309

[5]

Zhang Z Q, Zhang L, Yang G Z. A computationally efficient method for hand–eye calibration. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(10): 1775–1787

[6]

Su H, Qi W, Yang C G, Sandoval J, Ferrigno G, Momi E D. Deep neural network approach in robot tool dynamics identification for bilateral teleoperation. IEEE Robotics and Automation Letters, 2020, 5(2): 2943–2949

[7]

Wang Z Y, Zi B, Ding H F, You W, Yu L T. Hybrid grey prediction model-based autotracking algorithm for the laparoscopic visual window of surgical robot. Mechanism and Machine Theory, 2018, 123: 107–123

[8]

Allan M, Ourselin S, Hawkes D J, Kelly J D, Stoyanov D. 3-D pose estimation of articulated instruments in robotic minimally invasive surgery. IEEE Transactions on Medical Imaging, 2018, 37(5): 1204–1213

[9]

Kassahun Y, Yu B B, Tibebu A T, Stoyanov D, Giannarou S, Metzen J H, Vander Poorten E. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(4): 553–568

[10]

Du X F, Kurmann T, Chang P L, Allan M, Ourselin S, Sznitman R, Kelly J D, Stoyanov D. Articulated multi-instrument 2-D pose estimation using fully convolutional networks. IEEE Transactions on Medical Imaging, 2018, 37(5): 1276–1287

[11]

Wang Z R, Liu Z W, Ma Q L, Cheng A, Liu Y H, Kim S, Deguet A, Reiter A, Kazanzides P, Taylor R H. Vision-based calibration of dual RCM-based robot arms in human‒robot collaborative minimally invasive surgery. IEEE Robotics and Automation Letters, 2018, 3(2): 672–679

[12]

Tsai R Y, Lenz R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345–358

[13]

Shiu Y C, Ahmad S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX = XB. IEEE Transactions on Robotics and Automation, 1989, 5(1): 16–29

[14]

Chou J C K, Kamel M. Finding the position and orientation of a sensor on a robot manipulator using quaternions. The International Journal of Robotics Research, 1991, 10(3): 240–254

[15]

Horaud R, Dornaika F. Hand‒eye calibration. The International Journal of Robotics Research, 1995, 14(3): 195–210

[16]

Park F C, Martin B J. Robot sensor calibration: solving AX = XB on the Euclidean group. IEEE Transactions on Robotics and Automation, 1994, 10(5): 717–721

[17]

Daniilidis K. Hand‒eye calibration using dual quaternions. The International Journal of Robotics Research, 1999, 18(3): 286–298

[18]

Lu Y C, Chou J C K. Eight-space quaternion approach for robotic hand‒eye calibration. In: Proceedings of 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century. Vancouver: IEEE, 1995, 3316–3321

[19]

Zhao Z J, Liu Y C. A hand‒eye calibration algorithm based on screw motions. Robotica, 2009, 27(2): 217–223

[20]

Li W, Dong M L, Lu N G, Lou X P, Sun P. Simultaneous robot–world and hand–eye calibration without a calibration object. Sensors, 2018, 18(11): 3949

[21]

Andreff N, Horaud R, Espiau B. On-line hand–eye calibration. In: Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling. Ottawa: IEEE, 1999, 430–436

[22]

Pachtrachai K, Vasconcelos F, Dwyer G, Hailes S, Stoyanov D. Hand‒eye calibration with a remote centre of motion. IEEE Robotics and Automation Letters, 2019, 4(4): 3121–3128

[23]

Mao J F, Huang X P, Jiang L. A flexible solution to AX = XB for robot hand‒eye calibration. In: Proceedings of the 10th WSEAS International Conference on Robotics, Control and Manufacturing Technology. Hangzhou: World Scientific and Engineering Academy and Society (WSEAS), 2010, 118–122

[24]

Schmidt J, Vogt F, Niemann H. Robust hand–eye calibration of an endoscopic surgery robot using dual quaternions. In: Michaelis B, Krell G, eds. Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2003, 548–556

[25]

Zhao Z J. Hand‒eye calibration using convex optimization. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011, 2947–2952

[26]

Enebuse I, Foo M, Ibrahim B S K K, Ahmed H, Supmak F, Eyobu O S. A comparative review of hand‒eye calibration techniques for vision guided robots. IEEE Access, 2021, 9: 113143–113155

[27]

Pachtrachai K, Vasconcelos F, Edwards P, Stoyanov D. Learning to calibrate—estimating the hand‒eye transformation without calibration objects. IEEE Robotics and Automation Letters, 2021, 6(4): 7309–7316

[28]

Pachtrachai K, Allan M, Pawar V, Hailes S, Stoyanov D. Hand‒eye calibration for robotic assisted minimally invasive surgery without a calibration object. In: Proceedings of 2016 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 2485–2491

[29]

Thompson S, Stoyanov D, Schneider C, Gurusamy K, Ourselin S, Davidson B, Hawkes D, Clarkson M J. Hand–eye calibration for rigid laparoscopes using an invariant point. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6): 1071–1080

[30]

Pachtrachai K, Vasconcelos F, Chadebecq F, Allan M, Hailes S, Pawar V, Stoyanov D. Adjoint transformation algorithm for hand–eye calibration with applications in robotic assisted surgery. Annals of Biomedical Engineering, 2018, 46(10): 1606–1620

[31]

Su H, Li S, Manivannan J, Bascetta L, Ferrigno G, Momi E D. Manipulability optimization control of a serial redundant robot for robot-assisted minimally invasive surgery. In: Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019, 1323–1328

[32]

Morgan I, Jayarathne U, Rankin A, Peters T M, Chen E C S. Hand‒eye calibration for surgical cameras: a procrustean perspective-n-point solution. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(7): 1141–1149

[33]

Malti A, Barreto J P. Hand–eye and radial distortion calibration for rigid endoscopes. The International Journal of Medical Robotics and Computer Assisted Surgery, 2013, 9(4): 441–454

[34]

Peng J Q, Xu W F, Wang F X, Han Y, Liang B. A hybrid hand–eye calibration method for multilink cable-driven hyper-redundant manipulators. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–13

[35]

Niu G J, Pan B, Ai Y, Fu Y L. Intuitive control algorithm of a novel minimally invasive surgical robot. Computer Assisted Surgery, 2016, 21(sup1): 92–101

[36]

Niu G J, Pan B, Fu Y L, Qu C C. Development of a new medical robot system for minimally invasive surgery. IEEE Access, 2020, 8: 144136–144155

[37]

Zuo S Y, Wang Z, Zhang T C, Chen B J. A novel master–slave intraocular surgical robot with force feedback. The International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 17(4): e2267

[38]

Dimitrakakis E, Lindenroth L, Dwyer G, Aylmore H, Dorward N L, Marcus H J, Stoyanov D. An intuitive surgical handle design for robotic neurosurgery. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(7): 1131–1139

[39]

Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7577KB)

1678

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/