State-of-the-art on theories and applications of cable-driven parallel robots

Zhaokun ZHANG , Zhufeng SHAO , Zheng YOU , Xiaoqiang TANG , Bin ZI , Guilin YANG , Clément GOSSELIN , Stéphane CARO

Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 37

PDF (4845KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (3) : 37 DOI: 10.1007/s11465-022-0693-3
REVIEW ARTICLE
REVIEW ARTICLE

State-of-the-art on theories and applications of cable-driven parallel robots

Author information +
History +
PDF (4845KB)

Abstract

Cable-driven parallel robot (CDPR) is a type of high-performance robot that integrates cable-driven kinematic chains and parallel mechanism theory. It inherits the high dynamics and heavy load capacities of the parallel mechanism and significantly improves the workspace, cost and energy efficiency simultaneously. As a result, CDPRs have had irreplaceable roles in industrial and technological fields, such as astronomy, aerospace, logistics, simulators, and rehabilitation. CDPRs follow the cutting-edge trend of rigid–flexible fusion, reflect advanced lightweight design concepts, and have become a frontier topic in robotics research. This paper summarizes the kernel theories and developments of CDPRs, covering configuration design, cable-force distribution, workspace and stiffness, performance evaluation, optimization, and motion control. Kinematic modeling, workspace analysis, and cable-force solution are illustrated. Stiffness and dynamic modeling methods are discussed. To further promote the development, researchers should strengthen the investigation in configuration innovation, rapid calculation of workspace, performance evaluation, stiffness control, and rigid–flexible coupling dynamics. In addition, engineering problems such as cable materials, reliability design, and a unified control framework require attention.

Graphical abstract

Keywords

cable-driven parallel robot / kinematics / optimization / dynamics / control

Cite this article

Download citation ▾
Zhaokun ZHANG, Zhufeng SHAO, Zheng YOU, Xiaoqiang TANG, Bin ZI, Guilin YANG, Clément GOSSELIN, Stéphane CARO. State-of-the-art on theories and applications of cable-driven parallel robots. Front. Mech. Eng., 2022, 17(3): 37 DOI:10.1007/s11465-022-0693-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gough V , Whitehall S G . Universal tyre test machine. In: Proceedings of the 9th International Congress FISITA. London, 1962, 117– 137

[2]

Stewart D . A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 1965, 180( 1): 371– 386

[3]

Shao Z F , Tang X Q , Chen X , Wang L P . Research on the inertia matching of the Stewart parallel manipulator. Robotics and Computer-Integrated Manufacturing, 2012, 28( 6): 649– 659

[4]

Zhang Z K , Wang L P , Shao Z F . Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion. Mechanism and Machine Theory, 2018, 130 : 86– 108

[5]

Staicu S Shao Z F Zhang Z K Tang X Q Wang L P. Kinematic analysis of the X4 translational–rotational parallel robot. International Journal of Advanced Robotic Systems, 2018, 15(5): 1729881418803849

[6]

Wang D , Wang L P , Wu J , Ye H . An experimental study on the dynamics calibration of a 3-DOF parallel tool head. IEEE/ASME Transactions on Mechatronics, 2019, 24( 6): 2931– 2941

[7]

Dong W , Du Z J , Xiao Y Q , Chen X G . Development of a parallel kinematic motion simulator platform. Mechatronics, 2013, 23( 1): 154– 161

[8]

Clavel R . DELTA: a fast robot with parallel geometry. In: Proceedings of the 18th International Symposium on Industrial Robots. New York: Springer, 1988, 91– 100

[9]

Chen X , Liu X J , Xie F G , Sun T . A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: the sprint Z3 and A3 tool heads. International Journal of Advanced Robotic Systems, 2014, 11( 1): 5

[10]

Gosselin C . Cable-driven parallel mechanisms: state of the art and perspectives. Mechanical Engineering Reviews, 2014, 1( 1): DSM0004

[11]

Landsberger S E. Design and construction of a cable-controlled, parallel link manipulator. Dissertation for the Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 1984

[12]

Tanaka M , Seguchi Y , Shimada S . Kinemato-statics of SkyCam-type wire transport system. In: Proceedings of USA-Japan Symposium on Flexible Automation, Crossing Bridges: Advances in Flexible Automation and Robotics. Minneapolis Minnesota: The Society, 1988, 689– 694

[13]

Albus J , Bostelman R , Dagalakis N . The NIST robocrane. Journal of Robotic Systems, 1993, 10( 5): 709– 724

[14]

NIST . Schematics: TensileTruss Robotic System and NIST’s RoboCrane. Available from NIST website, 2021

[15]

NIST . Gantries. Available from NIST website, 2017

[16]

NIST . Wide View: RoboCrane® for Aircraft Maintenance. Available from NIST website, 2006

[17]

NIST . Material Handling. Available from NIST website, 2017

[18]

NIST . Robocrane: large scale manufacturing using cable control. Available from NIST website, 2021

[19]

Wikipedia . RoboCrane. Available from Wikipedia website, 2021

[20]

Qian L , Yao R , Sun J H , Xu J L , Pan Z C , Jiang P . FAST: its scientific achievements and prospects. The Innovation, 2020, 1( 3): 100053

[21]

Tang X Q , Shao Z F . Trajectory generation and tracking control of a multi-level hybrid support manipulator in FAST. Mechatronics, 2013, 23( 8): 1113– 1122

[22]

El-Ghazaly G , Gouttefarde M , Creuze V . Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator: CoGiRo. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Cham: Springer, 2014, 32 : 179– 200

[23]

JASO Industrial. CraneBot: the flexible robotic crane. Available from JASO Industrial website, 2022

[24]

Wu Y L , Cheng H H , Fingrut A , Crolla K , Yam Y , Lau D . CU-brick cable-driven robot for automated construction of complex brick structures: from simulation to hardware realization. In: Proceedings of 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). Brisbane: IEEE, 2018, 166– 173

[25]

Bruckmann T . Reichert C, Meik M, Lemmen P, Spengler A, Mattern H, König M. Concept studies of automated construction using cable-driven parallel robots. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 53 : 364– 375

[26]

Hephaestus . About the project. Available from Hephaestus website, 2017

[27]

Pan W , Iturralde K , Bock T , Martinez R G , Juez O M , Finocchiaro P . A Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings. Sustainability, 2020, 12( 14): 5730

[28]

Bruckmann T , Sturm C , Fehlberg L , Reichert C . An energy-efficient wire-based storage and retrieval system. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong: IEEE, 2013, 631– 636

[29]

Miermeister P , Lächele M , Boss R , Masone C , Schenk C , Tesch J , Kerger M , Teufel H , Pott A , Bülthoff H H . The cablerobot simulator large scale motion platform based on cable robot technology. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 3024– 3029

[30]

Bruckmann T , Mikelsons L , Brandt T , Schramm D , Pott A , Abdel-Maksoud M . A novel tensed mechanism for simulation of maneuvers in wind tunnels. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego: ASME, 2009, 17– 24

[31]

Farcy D Llibre M Carton P Lambert C. SACSO: wire-driven parallel set-up for dynamic tests in wind tunnel–review of principles and advantages for identification of aerodynamic models for flight mechanics. In: Proceedings of the 8th ONERA-DLR Aerospace Symposium. Göttingen, 2007

[32]

Barnett E , Gosselin C . Large-scale 3D printing with a cable-suspended robot. Additive Manufacturing, 2015, 7 : 27– 44

[33]

Zi B , Wang N , Qian S , Bao K L . Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mechanism and Machine Theory, 2019, 132 : 207– 222

[34]

Qian S , Bao K L , Zi B , Wang N . Kinematic calibration of a cable-driven parallel robot for 3D printing. Sensors, 2018, 18( 9): 2898

[35]

Pott A , Tempel P , Verl A , Wulle F . Design, implementation and long-term running experiences of the cable-driven parallel robot CaRo printer. In: Pott A, Bruckmann T, eds. CableCon 2019: Cable-Driven Parallel Robots. Cham: Springer, 2019, 74 : 379– 390

[36]

Masiero S , Celia A , Armani M , Rosati G . A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging clinical and experimental research, 2006, 18( 6): 531– 535

[37]

Surdilovic D , Bernhardt R . STRING-MAN: a new wire robot for gait rehabilitation. In: Proceedings of IEEE International Conference on Robotics and Automation. New Orleans: IEEE, 2004, 2031– 2036

[38]

Surdilovic D , Bernhardt R , Schmidt T , Zhang J . 26 STRING-MAN: A novel wire robot for gait rehabilitation. In: Bien Z Z, Stefanov D, eds. Advances in Rehabilitation Robotics. Lecture Notes in Control and Information Science. Berlin, Heidelberg: Springer, 2006, 306 : 413– 424

[39]

Mao Y , Agrawal S K . Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 2012, 28( 4): 922– 931

[40]

Mao Y , Jin X , Gera Dutta G , Scholz J P , Agrawal S K . Human movement training with a cable driven ARm EXoskeleton (CAREX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23( 1): 84– 92

[41]

Ming A , Higuchi T . Study on multiple degree-of-freedom positioning mechanism using wires. I: concept, design and control. International Journal of the Japan Society for Precision Engineering, 1994, 28( 2): 131– 138

[42]

Nguyen V D . Constructing force-closure grasps. The International Journal of Robotics Research, 1988, 7( 3): 3– 16

[43]

Verhoeven R. Analysis of the workspace of tendon-based Stewart platforms. Dissertation for the Doctoral Degree. Essen: University of Duisburg-Essen, 2004

[44]

Riechel A T Bosscher P Lipkin H Ebert-Uphoff I. Concept paper: cable-driven robots for use in hazardous environments. In: Proceedings of the 10th International Topical Meeting on Robotics and Remote Systems for Hazardous Environments. Gainesville, 2004

[45]

Kawamura S , Kino H , Won C . High-speed manipulation by using parallel wire-driven robots. Robotica, 2000, 18( 1): 13– 21

[46]

Roberts R G , Graham T , Lippitt T . On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. Journal of Robotic Systems, 1998, 15( 10): 581– 597

[47]

Seon J A , Park S , Ko S Y , Park J O . Cable configuration analysis to increase the rotational range of suspended 6-DOF cable driven parallel robots. In: Proceedings of 2016 the 16th International Conference on Control, Automation and Systems (ICCAS). Gyeongju: IEEE, 2016, 1047– 1052

[48]

Wang W F. Research on redundantly restrained cable-driven parallel mechanism for simulating force. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2016

[49]

Eden J , Song C , Tan Y , Oetomo D , Lau D . CASPR-ROS: a generalised cable robot software in ROS for hardware. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Mechanisms and Machine Science. Cham: Springer, 2018, 53 : 50– 61

[50]

Gao B T , Zhu Z Y , Zhao J G , Jiang L J . Inverse kinematics and workspace analysis of a 3 DOF flexible parallel humanoid neck robot. Journal of Intelligent & Robotic Systems, 2017, 87( 2): 211– 229

[51]

Zhang Z K , Shao Z F , Wang L P . Optimization and implementation of a high-speed 3-DOFs translational cable-driven parallel robot. Mechanism and Machine Theory, 2020, 145 : 103693

[52]

Lau D , Oetomo D , Halgamuge S K . Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix. IEEE Transactions on Robotics, 2013, 29( 5): 1102– 1113

[53]

Rone W S , Saab W , Ben-Tzvi P . Design, modeling, and integration of a flexible universal spatial robotic tail. Journal of Mechanisms and Robotics, 2018, 10( 4): 041001

[54]

Li C S , Gu X Y , Ren H L . A cable-driven flexible robotic grasper with Lego-like modular and reconfigurable joints. IEEE/ASME Transactions on Mechatronics, 2017, 22( 6): 2757– 2767

[55]

Landsberger S E , Sheridan T B . A new design for parallel link manipulator. In: Proceedings of 1985 IEEE International Conference on Systems. Tucson: IEEE, 1985, 812– 814

[56]

Dekker R , Khajepour A , Behzadipour S . Design and testing of an ultra-high-speed cable robot. International Journal of Robotics and Automation, 2006, 21( 1): 25– 34

[57]

Behzadipour S , Khajepour A . A new cable-based parallel robot with three degrees of freedom. Multibody System Dynamics, 2005, 13( 4): 371– 383

[58]

Zhang Z K , Shao Z F , Wang L P , Shih A J . Optimal design of a high-speed pick-and-place cable-driven parallel robot. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 340– 352

[59]

Duan Q J , Vashista V , Agrawal S K . Effect on wrench-feasible workspace of cable-driven parallel robots by adding springs. Mechanism and Machine Theory, 2015, 86 : 201– 210

[60]

Taghavi A , Behzadipour S , Khalilinasab N , Zohoor H . Workspace improvement of two-link cable-driven mechanisms with spring cable. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer, 2013, 201– 213

[61]

von Zitzewitz J , Fehlberg L , Bruckmann T , Vallery H . Use of passively guided deflection units and energy-storing elements to increase the application range of wire robots. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer, 2013, 167– 184

[62]

Xie G Q , Zhang Z K , Shao Z F , Wang L P . Research on the orientation error of the translational cable-driven parallel robots. Journal of Mechanisms and Robotics, 2022, 14( 3): 031003

[63]

Bosscher P , Williams R L II , Tummino M . A concept for rapidly-deployable cable robot search and rescue systems. In: Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. California: ASME, 2005, 589– 598

[64]

Alikhani A , Behzadipour S , Alasty A , Sadough Vanini S A . Design of a large-scale cable-driven robot with translational motion. Robotics and Computer-Integrated Manufacturing, 2011, 27( 2): 357– 366

[65]

Gagliardini L , Caro S , Gouttefarde M , Girin A . Discrete reconfiguration planning for cable-driven parallel robots. Mechanism and Machine Theory, 2016, 100 : 313– 337

[66]

Wang H B , Kinugawa J , Kosuge K . Exact kinematic modeling and identification of reconfigurable cable-driven robots with dual-pulley cable guiding mechanisms. IEEE/ASME Transactions on Mechatronics, 2019, 24( 2): 774– 784

[67]

Pott A. Cable-Driven Parallel Robots: Theory and Application. Cham: Springer, 2018

[68]

Gonzalez-Rodriguez A , Castillo-Garcia F J , Ottaviano E , Rea P , Gonzalez-Rodriguez A G . On the effects of the design of cable-driven robots on kinematics and dynamics models accuracy. Mechatronics, 2017, 43 : 18– 27

[69]

Jin X J , Jung J , Piao J L , Choi E , Park J O , Kim C S . Solving the pulley inclusion problem for a cable-driven parallel robotic system: extended kinematics and twin-pulley mechanism. Journal of Mechanical Science and Technology, 2018, 32( 6): 2829– 2838

[70]

Idà E , Bruckmann T , Carricato M . Rest-to-rest trajectory planning for underactuated cable-driven parallel robots. IEEE Transactions on Robotics, 2019, 35( 6): 1338– 1351

[71]

Zhang Z K , Xie G Q , Shao Z F , Gosselin C . Kinematic calibration of cable-driven parallel robots considering the pulley kinematics. Mechanism and Machine Theory, 2022, 169 : 104648

[72]

Pott A . Influence of pulley kinematics on cable-driven parallel robots. In: Lenarcic J, Husty M, eds. Latest Advances in Robot Kinematics. Dordrecht: Springer, 2012, 197– 204

[73]

Schmidt V , Pott A . Implementing extended kinematics of a cable-driven parallel robot in real-time. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin: Springer, 2013, 287– 298

[74]

Kozak K , Zhou Q , Wang J S . Static analysis of cable-driven manipulators with non-negligible cable mass. IEEE Transactions on Robotics, 2006, 22( 3): 425– 433

[75]

Yao R Tang X Q Li T M Ren G X. Analysis and design of 3T cable-driven parallel manipulator for the feedback’s orientation of the large radio telescope. Journal of Mechanical Engineering, 2007, 43(11): 105– 109 (in Chinese)

[76]

Tang X Q Shao Z F Yao R. Research and application of cable-drive parallel mechanism and rigid parallel mechanism—research and development of the feed support system of the 40 m scale model of FAST. Beijing: Tsinghua University Press, 2020

[77]

Fang S Q. Design, modeling and motion control of tendon-based parallel manipulators. Dissertation for the Doctoral Degree. Essen: University of Duisburg-Essen, 2005

[78]

Merlet J P . Kinematics of the wire-driven parallel robot MARIONET using linear actuators. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 3857– 3862

[79]

Aref M M , Oftadeh R , Taghirad H D . Kinematics and Jacobian analysis of the KNTU CDRPM: a cable driven redundant parallel manipulator. In: Proceedings of the 17th Iranian Conference on Electrical Engineering. Tehran, 2009, 319– 324

[80]

Fabritius M , Pott A . A forward kinematic code for cable-driven parallel robots considering cable sagging and pulleys. In: Lenarčič J, Siciliano B, eds. Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics. Cham: Springer, 2021, 15 : 218– 225

[81]

Santos J C , Gouttefarde M . A real-time capable forward kinematics algorithm for cable-driven parallel robots considering pulley kinematics. In: Lenarčič J, Siciliano B, eds. Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics. Cham: Springer, 2021, 15 : 199– 208

[82]

Hassan M , Khajepour A . Optimization of actuator forces in cable-based parallel manipulators using convex analysis. IEEE Transactions on Robotics, 2008, 24( 3): 736– 740

[83]

Borgstrom P H , Jordan B L , Borgstrom B J , Stealey M J , Sukhatme G S , Batalin M A , Kaiser W J . NIMS-PL: a cable-driven robot with self-calibration capabilities. IEEE Transactions on Robotics, 2009, 25( 5): 1005– 1015

[84]

Bruckmann T , Pott A , Franitza D , Hiller M . A modular controller for redundantly actuated tendon-based Stewart platforms. In: Proceedings of European Conference on Mechanism Science. Obergurgl, 2006, 1– 12

[85]

Notash L . Designing positive tension for wire-actuated parallel manipulators. In: Kumar V, Schmiedeler J, Sreenivasan S, Su H J, eds. Advances in Mechanisms, Robotics and Design Education and Research. Heidelberg: Springer, 2013, 14 : 251– 263

[86]

Gosselin C , Grenier M . On the determination of the force distribution in overconstrained cable-driven parallel mechanisms. Meccanica, 2011, 46( 1): 3– 15

[87]

Pott A , Bruckmann T , Mikelsons L . Closed-form force distribution for parallel wire robots. In: Kecskeméthy A, Müller A, eds. Computational Kinematics. Berlin: Springer, 2009, 25– 34

[88]

Lim W B , Yeo S H , Yang G L . Optimization of tension distribution for cable-driven manipulators using tension-level index. IEEE/ASME Transactions on Mechatronics, 2014, 19( 2): 676– 683

[89]

Mikelsons L , Bruckmann T , Hiller M , Schramm D . A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 3869– 3874

[90]

Taghirad H D , Bedoustani Y B . An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators. IEEE Transactions on Robotics, 2011, 27( 6): 1137– 1143

[91]

Yang K S , Yang G L , Wang Y , Zhang C , Chen S L . Stiffness-oriented cable tension distribution algorithm for a 3-DOF cable-driven variable-stiffness module. In: Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics. Munich: IEEE, 2017, 454– 459

[92]

Azizian K , Cardou P , Moore B . Classifying the boundaries of the wrench-closure workspace of planar parallel cable-driven mechanisms by visual inspection. Journal of Mechanisms and Robotics, 2012, 4( 2): 024503

[93]

Bruckmann T , Pott A , Hiller M . Calculating force distributions for redundantly actuated tendon-based Stewart platforms. In: Lennarčič J, Roth B, eds. Advances in Robot Kinematics. Dordrecht: Springer, 2006, 403– 412

[94]

Gouttefarde M , Lamaury J , Reichert C , Bruckmann T . A versatile tension distribution algorithm for n-DOF parallel robots driven by n+2 cables. IEEE Transactions on Robotics, 2015, 31( 6): 1444– 1457

[95]

Rasheed T , Long P , Marquez-Gamez D , Caro S . Tension distribution algorithm for planar mobile cable-driven parallel robots. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 53 : 268– 279

[96]

Cui Z W , Tang X Q , Hou S H , Sun H N . Non-iterative geometric method for cable-tension optimization of cable-driven parallel robots with 2 redundant cables. Mechatronics, 2019, 59 : 49– 60

[97]

Alp A B , Agrawal S K . Cable suspended robots: design, planning and control. In: Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington: IEEE, 2002, 4 : 4275– 4280

[98]

Gouttefarde M , Gosselin C M . Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Transactions on Robotics, 2006, 22( 3): 434– 445

[99]

Pham C B , Yeo S H , Yang G L , Kurbanhusen M S , Chen I M . Force-closure workspace analysis of cable-driven parallel mechanisms. Mechanism and Machine Theory, 2006, 41( 1): 53– 69

[100]

Ebert-Uphoff I , Voglewede P A . On the connection between cable-driven robots, parallel manipulators and grasping. In: Proceedings of 2004 IEEE International Conference on Robotics & Automation. New Orleans: IEEE, 2004, 4521– 4526

[101]

Bosscher P , Riechel A T , Ebert-Uphoff I . Wrench-feasible workspace generation for cable-driven robots. IEEE Transactions on Robotics, 2006, 22( 5): 890– 902

[102]

Riechel A T , Ebert-Uphoff I . Force-feasible workspace analysis for underconstrained, point-mass cable robots. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans: IEEE, 2004, 4956– 4962

[103]

Verhoeven R , Hiller M . Estimating the controllable workspace of tendon-based Stewart platforms. In: Lenarčič J, Stanišić M M, eds. Advances in Robot Kinematics. Dordrecht: Springer, 2000, 277– 284

[104]

Alikhani A , Behzadipour S , Sadough Vanini S A , Alasty A . Workspace analysis of a three DOF cable-driven mechanism. Journal of Mechanisms and Robotics, 2009, 1( 4): 041005

[105]

Barrette G , Gosselin C M . Determination of the dynamic workspace of cable-driven planar parallel mechanisms. Journal of Mechanical Design, 2005, 127( 2): 242– 248

[106]

Gagliardini L , Gouttefarde M , Caro S . Determination of a dynamic feasible workspace for cable-driven parallel robots. In: Lenarčič J, Merlet J P, eds. Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics. Cham: Springer, 2018, 4 : 361– 370

[107]

Shao Z F , Peng F Z , Zhang Z K , Li H S . Research on the dynamic trajectory of cable-suspended parallel robot considering the uniformity of cable tension. In: Proceedings of 2019 IEEE the 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Suzhou: IEEE, 2019, 795– 801

[108]

Zhang Y J , Zhang Y R , Dai X W , Yang Y . Workspace analysis of a novel 6-DOF cable-driven parallel robot. In: Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin: IEEE, 2009, 2403– 2408

[109]

Zlatanov D , Agrawal S , Gosselin C M . Convex cones in screw spaces. Mechanism and Machine Theory, 2005, 40( 6): 710– 727

[110]

Dong X D Duan Q J Ma B Duan X C. Workspace algorithm of cable-driven serial and parallel manipulators based on convex set theory. China Mechanical Engineering, 2016, 27(18): 2424– 2429, 2436 (in Chinese)

[111]

Gouttefarde M , Daney D , Merlet J P . Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Transactions on Robotics, 2011, 27( 1): 1– 13

[112]

Abbasnejad G , Eden J , Lau D . Generalized ray-based lattice generation and graph representation of wrench-closure workspace for arbitrary cable-driven robots. IEEE Transactions on Robotics, 2019, 35( 1): 147– 161

[113]

Jiang X L , Barnett E , Gosselin C . Periodic trajectory planning beyond the static workspace for 6-DOF cable-suspended parallel robots. IEEE Transactions on Robotics, 2018, 34( 4): 1128– 1140

[114]

Jiang X L , Gosselin C . Dynamic point-to-point trajectory planning of a three-DOF cable-suspended parallel robot. IEEE Transactions on Robotics, 2016, 32( 6): 1550– 1557

[115]

Dion-Gauvin P , Gosselin C . Trajectory planning for the static to dynamic transition of point-mass cable-suspended parallel mechanisms. Mechanism and Machine Theory, 2017, 113 : 158– 178

[116]

Gosselin C , Ren P , Foucault S . Dynamic trajectory planning of a two-DOF cable-suspended parallel robot. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA). Saint Paul: IEEE, 2012, 1476– 1481

[117]

Gosselin C . Global planning of dynamically feasible trajectories for three-DOF spatial cable-suspended parallel robots. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin: Springer, 2013, 3– 22

[118]

Voglewede P A , Ebert-Uphoff I . Application of the antipodal grasp theorem to cable driven robots. IEEE Transactions on Robotics, 2005, 21( 4): 713– 718

[119]

Behzadipour S , Khajepour A . Stiffness of cable-based parallel manipulators with application to stability analysis. Journal of Mechanical Design, 2006, 128( 1): 303– 310

[120]

Surdilovic D , Radojicic J , Krüger J . Geometric stiffness analysis of wire robots: a mechanical approach. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer, 2013, 389– 404

[121]

Simaan N , Shoham M . Geometric interpretation of the derivatives of parallel robots’ Jacobian matrix with application to stiffness control. Journal of Mechanical Design, 2003, 125( 1): 33– 42

[122]

Cui Z W , Tang X Q , Hou S H , Sun H N . Research on controllable stiffness of redundant cable-driven parallel robots. IEEE/ASME Transactions on Mechatronics, 2018, 23( 5): 2390– 2401

[123]

Yeo S H , Yang G , Lim W B . Design and analysis of cable-driven manipulators with variable stiffness. Mechanism and Machine Theory, 2013, 69 : 230– 244

[124]

Jamshidifar H , Khajepour A , Fidan B , Rushton M . Kinematically-constrained redundant cable-driven parallel robots: modeling, redundancy analysis, and stiffness optimization. IEEE/ASME Transactions on Mechatronics, 2017, 22( 2): 921– 930

[125]

Bolboli J , Khosravi M A , Abdollahi F . Stiffness feasible workspace of cable-driven parallel robots with application to optimal design of a planar cable robot. Robotics and Autonomous Systems, 2019, 114 : 19– 28

[126]

Cui Z W , Tang X Q , Hou S H , Sun H N , Wang D J . Calculation and analysis of constant stiffness space for redundant cable-driven parallel robots. IEEE Access, 2019, 7 : 75407– 75419

[127]

Alamdari A , Haghighi R , Krovi V . Stiffness modulation in an elastic articulated-cable leg-orthosis emulator: theory and experiment. IEEE Transactions on Robotics, 2018, 34( 5): 1266– 1279

[128]

Yang K S , Yang G L , Chen S L , Wang Y , Zhang C , Fang Z J , Zheng T J , Wang C C . Study on stiffness-oriented cable tension distribution for a symmetrical cable-driven mechanism. Symmetry, 2019, 11( 9): 1158

[129]

Du J L , Bao H , Cui C Z . Stiffness and dexterous performances optimization of large workspace cable-driven parallel manipulators. Advanced Robotics, 2014, 28( 3): 187– 196

[130]

Yuan H , Courteille E , Deblaise D . Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mechanism and Machine Theory, 2015, 85 : 64– 81

[131]

Arsenault M . Workspace and stiffness analysis of a three-degree-of-freedom spatial cable-suspended parallel mechanism while considering cable mass. Mechanism and Machine Theory, 2013, 66 : 1– 13

[132]

Azizian K , Cardou P . The dimensional synthesis of spatial cable-driven parallel mechanisms. Journal of Mechanisms and Robotics, 2013, 5( 4): 044502

[133]

Abbasnejad G , Yoon J , Lee H . Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory. Mechanism and Machine Theory, 2016, 99 : 1– 18

[134]

Song D , Zhang L X , Xue F . Configuration optimization and a tension distribution algorithm for cable-driven parallel robots. IEEE Access, 2018, 6 : 33928– 33940

[135]

Zi B , Yin G C , Zhang D . Design and optimization of a hybrid-driven waist rehabilitation robot. Sensors, 2016, 16( 12): 2121

[136]

Xu L , Cao Y , Chen J , Jiang S . Design and workspace optimization of a 6/6 cable-suspended parallel robot. In: Proceedings of 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). Taiyuan: IEEE, 2010, 10 : 610– 614

[137]

Hernandez E , Valdez S I , Carbone G , Ceccarelli M . Design optimization of a cable-driven parallel robot in upper arm training-rehabilitation processes. In: Carvalho J C M, Martins D, Simoni R, Simas H, eds. Multibody Mechatronic Systems. Cham: Springer, 2018, 413– 423

[138]

Yang G L , Pham C B , Yeo S H . Workspace performance optimization of fully restrained cable-driven parallel manipulators. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006, 85– 90

[139]

Duan Q J , Li Q H , Li F , Duan X C . Analysis of the workspace of the cable-spring mechanism. Journal of Mechanical Engineering, 2016, 52( 15): 15– 20

[140]

Tang X , Tang L , Wang J , Sun D . Workspace quality analysis and application for a completely restrained 3-DOF planar cable-driven parallel manipulator. Journal of Mechanical Science and Technology, 2013, 27( 8): 2391– 2399

[141]

Newman M , Zygielbaum A , Terry B . Static analysis and dimensional optimization of a cable-driven parallel robot. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 152– 166

[142]

Hanafie J , Nurahmi L , Caro S , Pramujati B . Design optimization of spatial four cables suspended cable driven parallel robot for rapid life-scan. AIP Conference Proceedings, 2018, 1983( 1): 060007

[143]

Laribi M A , Carbone G , Zeghloul S . On the optimal design of cable-driven parallel robot with a prescribed workspace for upper limb rehabilitation tasks. Journal of Bionics Engineering, 2019, 16( 3): 503– 513

[144]

Ennaiem F , Chaker A , Arévalo J S S , Laribi M A , Bennour S , Mlika A , Romdhane L , Zeghloul S . Optimal design of a rehabilitation four cable-driven parallel robot for daily living activities. In: Zeghloul S, Laribi M A, Sandoval Arevalo J S, eds. Advances in Service and Industrial Robotics. Cham: Springer, 2020, 3– 12

[145]

Bryson J T , Jin X , Agrawal S K . Optimal design of cable-driven manipulators using particle swarm optimization. Journal of Mechanisms and Robotics, 2016, 8( 4): 041003

[146]

Shao Z F , Tang X Q , Yi W M . Optimal design of a 3-DOF cable-driven upper arm exoskeleton. Advances in Mechanical Engineering, 2014, 6 : 157096

[147]

Yao R , Tang X Q , Wang J S , Huang P . Dimensional optimization design of the four-cable-driven parallel manipulator in fast. IEEE/ASME Transactions on Mechatronics, 2010, 15( 6): 932– 941

[148]

Gueners D , Chanal H , Bouzgarrou B C . Stiffness optimization of a cable driven parallel robot for additive manufacturing. In: Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2020, 843– 849

[149]

Torres-Mendez S , Khajepour A . Design optimization of a warehousing cable-based robot. In: Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Buffalo: ASME, 2014, V05AT08A091

[150]

Li Y M , Xu Q S . GA-based multi-objective optimal design of a planar 3-DOF cable-driven parallel manipulator. In: Proceedings of 2006 IEEE International Conference on Robotics and Biomimetics. Kunming: IEEE, 2006, 1360– 1365

[151]

Cui Z W , Tang X Q , Hou S H , Sun H N , Wang D J . Optimization design of redundant cable driven parallel robots based on constant stiffness space. In: Proceedings of 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali: IEEE, 2019, 1041– 1046

[152]

Gouttefarde M , Collard J F , Riehl N , Baradat C . Geometry selection of a redundantly actuated cable-suspended parallel robot. IEEE Transactions on Robotics, 2015, 31( 2): 501– 510

[153]

Jamwal P K , Hussain S , Xie S Q . Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE Transactions on Automation Science and Engineering, 2015, 12( 4): 1433– 1446

[154]

Zhang Z K , Shao Z F , Peng F Z , Li H S , Wang L P . Workspace analysis and optimal design of a translational cable-driven parallel robot with passive springs. Journal of Mechanisms and Robotics, 2020, 12( 5): 051005

[155]

Zhang L X , Wang J S , Wang L P . Simplification of the rigid body dynamic model for a 6-UPS parallel kinematic machine under the accelerated motion and the decelerated motion. Journal of Mechanical Engineering, 2003, 39( 11): 117– 122

[156]

Staicu S . Dynamics analysis of the star parallel manipulator. Robotics and Autonomous Systems, 2009, 57( 11): 1057– 1064

[157]

Abdellatif H , Heimann B . Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mechanism and Machine Theory, 2009, 44( 1): 192– 207

[158]

Yang C F , Huang Q T , He J F , Jiang H Z , Han J W . Model-based control for 6-DOF parallel manipulator. In: Proceedings of 2009 International Asia Conference on Informatics in Control, Automation and Robotics. Bangkok: IEEE, 2009, 81– 84

[159]

Diao X M , Ma O . Vibration analysis of cable-driven parallel manipulators. Multibody System Dynamics, 2009, 21( 4): 347– 360

[160]

Khosravi M A , Taghirad H D . Dynamic analysis and control of cable driven robots with elastic cables. Transactions of the Canadian Society for Mechanical Engineering, 2011, 35( 4): 543– 557

[161]

Miermeister P , Pott A , Verl A . Dynamic modeling and hardware-in-the-loop simulation for the cable-driven parallel robot IPAnema. In: Proceedings of ISR 2010 (the 41st International Symposium on Robotics) and ROBOTIK 2010 (the 6th German Conference on Robotics). Munich: IEEE, 2010, 1– 8

[162]

Piao J L Jin X J Jung J Choi E Park J O Kim C S. Open-loop position control of a polymer cable–driven parallel robot via a viscoelastic cable model for high payload workspaces. Advances in Mechanical Engineering, 2017, 9(12): 1687814017737199

[163]

Piao J L , Jin X J , Choi E , Park J O , Kim C S , Jung J . A polymer cable creep modeling for a cable-driven parallel robot in a heavy payload application. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 62– 72

[164]

Shao Z F , Tang X Q , Wang L P , Chen X . Dynamic modeling and wind vibration control of the feed support system in FAST. Nonlinear Dynamics, 2012, 67( 2): 965– 985

[165]

Miermeister P , Kraus W , Lan T , Pott A . An elastic cable model for cable-driven parallel robots including hysteresis effects. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Cham: Springer, 2015, 32 : 17– 28

[166]

Choi S H , Park K S . Integrated and nonlinear dynamic model of a polymer cable for low-speed cable-driven parallel robots. Microsystem Technologies, 2018, 24( 11): 4677– 4687

[167]

Ottaviano E , Castelli G . A study on the effects of cable mass and elasticity in cable-based parallel manipulators. In: Parenti Castelli V, Schiehlen W, eds. ROMANSY 18 Robot Design, Dynamics and Control. Vienna: Springer, 2010, 524 : 149– 156

[168]

Du J L , Bao H , Duan X C , Cui C Z . Jacobian analysis of a long-span cable-driven manipulator and its application to forward solution. Mechanism and Machine Theory, 2010, 45( 9): 1227– 1238

[169]

Du J L , Cui C Z , Bao H , Qiu Y Y . Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. Journal of Computational and Nonlinear Dynamics, 2015, 10( 1): 011013

[170]

Du J L , Agrawal S K . Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. Journal of Vibration and Acoustics, 2015, 137( 2): 021020

[171]

Ferravante V , Riva E , Taghavi M , Braghin F , Bock T . Dynamic analysis of high precision construction cable-driven parallel robots. Mechanism and Machine Theory, 2019, 135 : 54– 64

[172]

Nguyen-Van S , Gwak K W , Nguyen D H , Lee S G , Kang B H . A novel modified analytical method and finite element method for vibration analysis of cable-driven parallel robots. Journal of Mechanical Science and Technology, 2020, 34( 9): 3575– 3586

[173]

Tempel P , Schmidt A , Haasdonk B , Pott A . Application of the rigid finite element method to the simulation of cable-driven parallel robots. In: Zeghloul S, Romdhane L, Laribi M, eds. Computational Kinematics. Cham: Springer, 2018, 50 : 198– 205

[174]

Liu Z H , Tang X Q , Shao Z F , Wang L P , Tang L W . Research on longitudinal vibration characteristic of the six-cable-driven parallel manipulator in FAST. Advances in Mechanical Engineering, 2013, 5 : 547416

[175]

Du J L , Duan X C , Qiu Y Y . Dynamic analysis and vibration attenuation of cable-driven parallel manipulators for large workspace applications. Advances in Mechanical Engineering, 2013, 5 : 361585

[176]

Do H D , Park K S . Analysis of effective vibration frequency of cable-driven parallel robot using mode tracking and quasi-static method. Microsystem Technologies, 2017, 23( 7): 2577– 2585

[177]

Yuan H , Courteille E , Gouttefarde M , Hervé P E . Vibration analysis of cable-driven parallel robots based on the dynamic stiffness matrix method. Journal of Sound and Vibration, 2017, 394 : 527– 544

[178]

Bao H Duan B Y Chen G D. Position control of 6-DOF cable-suspended parallel robotic with uncertain input. Journal of Mechanical Engineering, 2007, 43(7): 128– 132 (in Chinese)

[179]

Lu Y J , Zhu W B , Ren G X . Feedback control of a cable-driven Gough–Stewart platform. IEEE Transactions on Robotics, 2006, 22( 1): 198– 202

[180]

Chellal R , Cuvillon L , Laroche E . A kinematic vision-based position control of a 6-DOF cable-driven parallel robot. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Cham: Springer, 2015, 32 : 213– 225

[181]

Zake Z , Chaumette F , Pedemonte N , Caro S . Vision-based control and stability analysis of a cable-driven parallel robot. IEEE Robotics and Automation Letters, 2019, 4( 2): 1029– 1036

[182]

Shang W W , Zhang B Y , Zhang B , Zhang F , Cong S . Synchronization control in the cable space for cable-driven parallel robots. IEEE Transactions on Industrial Electronics, 2019, 66( 6): 4544– 4554

[183]

Duan X C Qiu Y Y Duan B Y Chen G D Bao H Mi J W. Adaptive interactive PID supervisory control of the macro-micro parallel manipulator. Journal of Mechanical Engineering, 2010, 46(1): 10– 17 (in Chinese)

[184]

Gordievsky V. Design and control of a robotic cable-suspended camera system for operation in 3-D industrial environment. Dissertation for the Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 2008

[185]

Baklouti S , Courteille E , Lemoine P , Caro S . Vibration reduction of cable-driven parallel robots through elasto-dynamic model-based control. Mechanism and Machine Theory, 2019, 139 : 329– 345

[186]

Abdelaziz S , Barbé L , Renaud P , de Mathelin M , Bayle B . Control of cable-driven manipulators in the presence of friction. Mechanism and Machine Theory, 2017, 107 : 139– 147

[187]

Najafi F , Bakhshizadeh M . Development a fuzzy PID controller for a parallel cable robot with flexible cables. In: Proceedings of 2016 the 4th International Conference on Robotics and Mechatronics (ICROM). Tehran: IEEE, 2016, 90– 97

[188]

Khosravi M A , Taghirad H D . Robust PID control of fully-constrained cable driven parallel robots. Mechatronics, 2014, 24( 2): 87– 97

[189]

Zi B , Sun H H , Zhang D . Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Robotics and Computer-Integrated Manufacturing, 2017, 48 : 196– 208

[190]

Babaghasabha R , Khosravi M A , Taghirad H D . Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics, 2015, 25 : 27– 36

[191]

Babaghasabha R , Khosravi M A , Taghirad H D . Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dynamics, 2016, 85( 1): 607– 620

[192]

Tajdari F , Kabganian M , Rad N F , Khodabakhshi E . Robust control of a 3-DOF parallel cable robot using an adaptive neuro-fuzzy inference system. In: Proceedings of 2017 Artificial Intelligence and Robotics (IRANOPEN). Qazvin: IEEE, 2017, 97– 101

[193]

Jabbari Asl H , Janabi-Sharifi F . Adaptive neural network control of cable-driven parallel robots with input saturation. Engineering Applications of Artificial Intelligence, 2017, 65 : 252– 260

[194]

Yu K , Lee L F , Tang C P , Krovi V N . Enhanced trajectory tracking control with active lower bounded stiffness control for cable robot. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010, 669– 674

[195]

Zarei M , Aflakian A , Kalhor A , Masouleh M T . Oscillation damping of nonlinear control systems based on the phase trajectory length concept: an experimental case study on a cable-driven parallel robot. Mechanism and Machine Theory, 2018, 126 : 377– 396

[196]

Jamshidifar H , Khosravani S , Fidan B , Khajepour A . Vibration decoupled modeling and robust control of redundant cable-driven parallel robots. IEEE/ASME Transactions on Mechatronics, 2018, 23( 2): 690– 701

[197]

Nishitani A , Inoue Y . Overview of the application of active/semiactive control to building structures in Japan. Earthquake Engineering & Structural Dynamics, 2001, 30( 11): 1565– 1574

[198]

Torres M A , Dubowsky S , Pisoni A C . Vibration control of deployment structures’ long-reach space manipulators: the P-PED method. In: Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis: IEEE, 1996, 2498– 2504

[199]

Nenchev D N , Yoshida K , Vichitkulsawat P , Konno A , Uchiyama M . Experiments on reaction null-space based decoupled control of a flexible structure mounted manipulator system. In: Proceedings of International Conference on Robotics and Automation. Albuquerque: IEEE, 1997, 2528– 2534

[200]

Yang T W , Xu W L , Tso S K . Dynamic modeling based on real-time deflection measurement and compensation control for flexible multi-link manipulators. Dynamics and Control, 2001, 11( 1): 5– 24

[201]

Staffetti E , Bruyninckx H , De Schutter J . On the invariance of manipulability indices. In: Lenarčič J, Thomas F, eds. Advances in Robot Kinematics. Dordrecht: Springer, 2002, 57– 66

[202]

Tang X Q , Chai X M , Tang L W , Shao Z F . Accuracy synthesis of a multi-level hybrid positioning mechanism for the feed support system in FAST. Robotics and Computer-Integrated Manufacturing, 2014, 30( 5): 565– 575

[203]

Rushton M , Khajepour A . Transverse vibration control in planar cable-driven robotic manipulators. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 53 : 243– 253

[204]

de Rijk R , Rushton M , Khajepour A . Out-of-plane vibration control of a planar cable-driven parallel robot. IEEE/ASME Transactions on Mechatronics, 2018, 23( 4): 1684– 1692

[205]

Rushton M , Jamshidifar H , Khajepour A . Multiaxis reaction system (MARS) for vibration control of planar cable-driven parallel robots. IEEE Transactions on Robotics, 2019, 35( 4): 1039– 1046

[206]

Korayem M H , Yousefzadeh M , Manteghi S . Tracking control and vibration reduction of flexible cable-suspended parallel robots using a robust input shaper. Scientia Iranica, 2018, 25( 1): 230– 252

[207]

Montgomery F , Vaughan J . Suppression of cable suspended parallel manipulator vibration utilizing input shaping. In: Proceedings of 2017 IEEE Conference on Control Technology and Applications (CCTA). Maui: IEEE, 2017, 1480– 1485

[208]

Liebherr . High-tensile fibre rope for tower cranes. Available from Liebherr website, 2021

[209]

Lau D , Eden J , Tan Y , Oetomo D . CASPR: a comprehensive cable-robot analysis and simulation platform for the research of cable-driven parallel robots. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 3004– 3011

[210]

Pott A. WireX: an open source initiative scientific software for analysis and design of cable-driven parallel robots. In: Proceedings of Fourth International Conference on Cable-driven Parallel Robots. Krakow, 2019

AI Summary AI Mindmap
PDF (4845KB)

6372

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/