Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

Haiying WEN , Jianxiong ZHU , Hui ZHANG , Min DAI , Bin LI , Zhisheng ZHANG , Weiliang XU , Ming CONG

Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (4) : 31

PDF (5486KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (4) : 31 DOI: 10.1007/s11465-022-0687-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

Author information +
History +
PDF (5486KB)

Abstract

Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses. A cable-driven linear actuator (CDLA) capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion. The CDLA presents remarkable advantages, such as lightweight and high stiffness structure, in using cable amplification and pulley systems. This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot (SMAR) to solve existing problems, such as bulky driving linkage and position change of the muscle’s origin. Stiffness analysis and performance experiment validate the CDLA’s efficiency, with its stiffness reaching 1379.6 N/mm (number of cable parts n = 4), which is 21.4 times the input wire stiffness. Accordingly, the CDLA’s force transmission efficiencies in two directions are 84.5% and 85.9%. Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses.

Graphical abstract

Keywords

masticatory robot / cable-driven / linear actuator / parallel robot / stiffness analysis

Cite this article

Download citation ▾
Haiying WEN, Jianxiong ZHU, Hui ZHANG, Min DAI, Bin LI, Zhisheng ZHANG, Weiliang XU, Ming CONG. Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion. Front. Mech. Eng., 2022, 17(4): 31 DOI:10.1007/s11465-022-0687-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun G F , Kleeberger M , Liu J . Complete dynamic calculation of lattice mobile crane during hoisting motion. Mechanism and Machine Theory, 2005, 40(4): 447–466

[2]

Tolles B A. US Patent, 20010034290A1, 2000-10-25

[3]

Sollmann K S , Jouaneh M K , Lavender D . Dynamic modelling of a two-axis, parallel, H-frame-type XY positioning system. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 280–290

[4]

Youssef K , Otis M J D . Reconfigurable fully constrained cable driven parallel mechanism for avoiding interference between cables. Mechanism and Machine Theory, 2020, 148: 103781

[5]

Geng X Y , Li M , Liu Y F , Li Y Y , Zheng W , Li Z B . Analytical tension-distribution computation for cable-driven parallel robots using hypersphere mapping algorithm. Mechanism and Machine Theory, 2020, 145: 103692

[6]

Abdolshah S , Zanotto D , Rosati G , Agrawal S K . Optimizing stiffness and dexterity of planar adaptive cable-driven parallel robots. Journal of Mechanisms and Robotics, 2017, 9(3): 031004

[7]

Zhang Z K , Shao Z F , Wang L P . Optimization and implementation of a high-speed 3-DOFs translational cable-driven parallel robot. Mechanism and Machine Theory, 2020, 145: 103693

[8]

Zi B , Wang N , Qian S , Bao K L . Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mechanism and Machine Theory, 2019, 132: 207–222

[9]

Cui X , Chen W H , Jin X , Agrawal S K . Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 161–172

[10]

Zanotto D , Rosati G , Minto S , Rossi A . Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Transactions on Robotics, 2014, 30(4): 974–979

[11]

Hu X H , Chen A , Luo Y G , Zhang C , Zhang E . Steerable catheters for minimally invasive surgery: a review and future directions. Computer Assisted Surgery, 2018, 23(1): 21–41

[12]

Sanjuan J D , Castillo A D , Padilla M A , Quintero M C , Gutierrez E E , Sampayo I P , Hernandez J R , Rahman M H . Cable driven exoskeleton for upper-limb rehabilitation: a design review. Robotics and Autonomous Systems, 2020, 126: 103445

[13]

Gao B T , Zhu Z Y , Zhao J G , Jiang L J . Inverse kinematics and workspace analysis of a 3 DOF flexible parallel humanoid neck robot. Journal of Intelligent & Robotic Systems, 2017, 87(2): 211–229

[14]

Chen X B, Yao J T, Li T, Li H L, Zhou P, Xu Y D. Development of a multi-cable-driven continuum robot controlled by parallel platforms. Journal of Mechanisms and Robotics: Transactions of the ASME, 2021, 13(2): 1–11 (in Chinese)

[15]

Yuan H , Courteille E , Deblaise D . Static and dynamic stiffness analysis of cable-driven parallel robots with non-negligible cable mass and elasticity. Mechanism and Machine Theory, 2015, 85: 64–81

[16]

Qian S , Zi B , Shang W W , Xu Q S . A review on cable-driven parallel robots. Chinese Journal of Mechanical Engineering, 2018, 31(1): 66

[17]

Yeo S H , Yang G , Lim W B . Design and analysis of cable-driven manipulators with variable stiffness. Mechanism and Machine Theory, 2013, 69: 230–244

[18]

Bolboli J , Khosravi M A , Abdollahi F . Stiffness feasible workspace of cable-driven parallel robots with application to optimal design of a planar cable robot. Robotics and Autonomous Systems, 2019, 114: 19–28

[19]

Anson M , Alamdari A , Krovi V . Orientation workspace and stiffness optimization of cable-driven parallel manipulators with base mobility. Journal of Mechanisms and Robotics, 2017, 9(3): 031011

[20]

Xu W L, Bronlund J E. Mastication Robots: Biological Inspiration to Implementation. Berlin: Springer, 2010

[21]

Wen H Y , Cong M , Wang G F , Qin W L , Xu W L , Zhang Z S . Dynamics and optimized torque distribution based force/position hybrid control of a 4-DOF redundantly actuated parallel robot with two point-contact constraints. International Journal of Control, Automation and Systems, 2019, 17(5): 1293–1303

[22]

Kasper R , Winter K , Pietzka S , Schramm A , Wilde F . Biomechanical in vitro study on the stability of patient-specific CAD/CAM mandibular reconstruction plates: a comparison between selective laser melted, milled, and hand-bent plates. Craniomaxillofacial Trauma & Reconstruction, 2021, 14(2): 135–143

[23]

Mostashiri N , Dhupia J , Verl A , Bronlund J , Xu W L . Optimizing the torque distribution of a redundantly actuated parallel robot to study the temporomandibular reaction forces during food chewing. Journal of Mechanisms and Robotics, 2020, 12(5): 051008

[24]

Takanobu H , Takanishi A , Ozawa D , Ohtsuki K , Ohnishi M , Okino A . Integrated dental robot system for mouth opening and closing training. In: Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington: IEEE, 2002, 1428–1433

[25]

Takanobu H , Maruyama T , Takanishi A , Ohtsuki K , Ohnishi M . Mouth opening and closing training with 6-DOF parallel robot. In: Proceedings of IEEE International Conference on Robotics and Automation. San Francisco: IEEE, 2000, 1384–1389

[26]

Takanobu H , Takanishi A , Kato I . Design of a mastication robot mechanism using a human skull model. In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Yokohama: IEEE, 1993, 203–208

[27]

Xu W L , Torrance J D , Chen B Q , Potgieter J , Bronlund J E , Pap J S . Kinematics and experiments of a life-sized masticatory robot for characterizing food texture. IEEE Transactions on Industrial Electronics, 2008, 55(5): 2121–2132

[28]

Wen H Y , Cong M , Xu W L , Zhang Z S , Dai M . Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator. Frontiers of Mechanical Engineering, 2021, 16(3): 451–467

[29]

Lee S J , Kim B K , Chun Y G , Park D J . Design of mastication robot with life-sized linear actuator of human muscle and load cells for measuring force distribution on teeth. Mechatronics, 2018, 51: 127–136

[30]

Chen B X , Dhupia J S , Morgenstern M P , Bronlund J E , Xu W L . Development of a biomimetic masticating robot for food texture analysis. Journal of Mechanisms and Robotics, 2022, 14(2): 021012

[31]

Xu W L , Pap J S , Bronlund J . Design of a biologically inspired parallel robot for foods chewing. IEEE Transactions on Industrial Electronics, 2008, 55(2): 832–841

[32]

Xu W L , Bronlund J , Kieser J . Choosing new ways to chew: a robotic model of the human masticatory system for reproducing chewing behaviors. IEEE Robotics & Automation Magazine, 2005, 12(2): 90–100

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5486KB)

6473

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/