Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

Peng CHEN , Tingwen YUAN , Yi YU , Yuwang LIU

Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (2) : 22

PDF (6696KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (2) : 22 DOI: 10.1007/s11465-022-0678-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles

Author information +
History +
PDF (6696KB)

Abstract

Owing to their inherent great flexibility, good compliance, excellent adaptability, and safe interactivity, soft robots have shown great application potential. The advantages of light weight, high efficiency, non-polluting characteristic, and environmental adaptability provide pneumatic soft robots an important position in the field of soft robots. In this paper, a soft robot with 10 soft modules, comprising three uniformly distributed endoskeleton pneumatic artificial muscles, was developed. The robot can achieve flexible motion in 3D space. A novel kinematic modeling method for variable-curvature soft robots based on the minimum energy method was investigated, which can accurately and efficiently analyze forward and inverse kinematics. Experiments show that the robot can be controlled to move to the desired position based on the proposed model. The prototype and modeling method can provide a new perspective for soft robot design, modeling, and control.

Graphical abstract

Keywords

pneumatic artificial muscles / soft robot / modeling approach / principle of virtual work / external load

Cite this article

Download citation ▾
Peng CHEN, Tingwen YUAN, Yi YU, Yuwang LIU. Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles. Front. Mech. Eng., 2022, 17(2): 22 DOI:10.1007/s11465-022-0678-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RusD, TolleyM T. Design, fabrication and control of soft robots. Nature, 2015, 521( 7553): 467– 475

[2]

LiuT L, XuW F, YangT W, LiY M. A hybrid active and passive cable-driven segmented redundant manipulator: design, kinematics, and planning. IEEE/ASME Transactions on Mechatronics, 2021, 26( 2): 930– 942

[3]

GuanQ H, SunJ, LiuY J, WereleyN M, LengJ S. Novel bending and helical extensile/contractile pneumatic artificial muscles inspired by elephant trunk. Soft Robotics, 2020, 7( 5): 597– 614

[4]

AubinC A, ChoudhuryS, JerchR, ArcherL A, PikulJ H, ShepherdR F. Electrolytic vascular systems for energy-dense robots. Nature, 2019, 571( 7763): 51– 57

[5]

KimY, YukH, ZhaoR K, ChesterS A, ZhaoX H. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558( 7709): 274– 279

[6]

LiG R, ChenX P, ZhouF H, LiangY M, XiaoY H, CaoX N, ZhangZ, ZhangM Q, WuB S, YinS Y, XuY, FanH B, ChenZ, SongW, YangW J, PanB B, HouJ Y, ZouW F, HeS P, YangX X, MaoG Y, JiaZ, ZhouH F, LiT F, QuS X, XuZ B, HuangZ L, LuoY W, XieT, GuJ, ZhuS Q, YangW. Self-powered soft robot in the Mariana Trench. Nature, 2021, 591( 7848): 66– 71

[7]

ParkS J, GazzolaM, ParkK S, ParkS, Di SantoV, BlevinsE L, LindJ U, CampbellP H, DauthS, CapulliA K, PasqualiniF S, AhnS, ChoA, YuanH Y, MaozB M, VijaykumarR, ChoiJ W, DeisserothK, LauderG V, MahadevanL, ParkerK K. Phototactic guidance of a tissue-engineered soft-robotic ray. Science, 2016, 353( 6295): 158– 162

[8]

WehnerM, TrubyR L, FitzgeraldD J, MosadeghB, WhitesidesG M, LewisJ A, WoodR J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536( 7617): 451– 455

[9]

ZhuM J, DoT N, HawkesE, VisellY. Fluidic fabric muscle sheets for wearable and soft robotics. Soft Robotics, 2020, 7( 2): 179– 197

[10]

CappelloL, GallowayK C, SananS, WagnerD A, GranberryR, EngelhardtS, HaufeF L, PeisnerJ D, WalshC J. Exploiting textile mechanical anisotropy for fabric-based pneumatic actuators. Soft Robotics, 2018, 5( 5): 662– 674

[11]

TolleyM T, ShepherdR F, MosadeghB, GallowayK C, WehnerM, KarpelsonM, WoodR J, WhitesidesG M. A resilient, untethered soft robot. Soft Robotics, 2014, 1( 3): 213– 223

[12]

KatzschmannR K, MarcheseA D, RusD. Autonomous object manipulation using a soft planar grasping manipulator. Soft Robotics, 2015, 2( 4): 155– 164

[13]

PeeleB N, WallinT J, ZhaoH C, ShepherdR F. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration & Biomimetics, 2015, 10( 5): 055003

[14]

TerrynS, BrancartJ, LefeberD, Van AsscheG, VanderborghtB. Self-healing soft pneumatic robots. Science Robotics, 2017, 2( 9): eaan4628

[15]

LiS Y, WangK W. Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning. Smart Materials and Structures, 2015, 24( 10): 105031

[16]

RobertsonM A, PaikJ. New soft robots really suck: vacuum-powered systems empower diverse capabilities. Science Robotics, 2017, 2( 9): eaan6357

[17]

GorissenB, ReynaertsD, KonishiS, YoshidaK, KimJ W, De VolderM. Elastic inflatable actuators for soft robotic applications. Advanced Materials, 2017, 29( 43): 1604977

[18]

KimW, ByunJ, KimJ K, ChoiW Y, JakobsenK, JakobsenJ, LeeD Y, ChoK J. Bioinspired dual-morphing stretchable origami. Science Robotics, 2019, 4( 36): eaay3493

[19]

MartinezR V, FishC R, ChenX, WhitesidesG M. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 2012, 22( 7): 1376– 1384

[20]

YangD, VermaM S, SoJ H, MosadeghB, KeplingerC, LeeB, KhashaiF, LossnerE, SuoZ G, WhitesidesG M. Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies, 2016, 1( 3): 1600055

[21]

JiaoZ D, JiC, ZouJ, YangH Y, PanM. Vacuum-powered soft pneumatic twisting actuators to empower new capabilities for soft robots. Advanced Materials Technologies, 2019, 4( 1): 1800429

[22]

LiS G, VogtD M, RusD, WoodR J. Fluid-driven origami-inspired artificial muscles. PNAS, 2017, 114( 50): 13132– 13137

[23]

DeshpandeA R, TseZ T H, RenH L. Origami-inspired bi-directional soft pneumatic actuator with integrated variable stiffness mechanism. In: Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR). IEEE, 2017, 417– 421

[24]

LeeJ G, RodrigueH. Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robotics, 2019, 6( 1): 109– 117

[25]

RendaF, BoyerF, DiasJ, SeneviratneL. Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Transactions on Robotics, 2018, 34( 6): 1518– 1533

[26]

Burgner-KahrsJ, RuckerD C, ChosetH. Continuum robots for medical applications: a survey. IEEE Transactions on Robotics, 2015, 31( 6): 1261– 1280

[27]

WebsterR J III, JonesB A. Design and kinematic modeling of constant curvature continuum robots: a review. The International Journal of Robotics Research, 2010, 29( 13): 1661– 1683

[28]

SoflaM S, SadighM J, ZareinejadM. Design and dynamic modeling of a continuum and compliant manipulator with large workspace. Mechanism and Machine Theory, 2021, 164 : 104413

[29]

TanN, GuX Y, RenH L. Design, characterization and applications of a novel soft actuator driven by flexible shafts. Mechanism and Machine Theory, 2018, 122 : 197– 218

[30]

Garriga-CasanovasA, Rodriguez y BaenaF. Complete follow-the-leader kinematics using concentric tube robots. The International Journal of Robotics Research, 2018, 37( 1): 197– 222

[31]

SchillerL, SeibelA, SchlattmannJ. A lightweight simulation model for soft robot’s locomotion and its application to trajectory optimization. IEEE Robotics and Automation Letters, 2020, 5( 2): 1199– 1206

[32]

YangC H, GengS N, WalkerI, BransonD T, LiuJ G, DaiJ S, KangR J. Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. International Journal of Robotics Research, 2020, 39( 14): 1620– 1634

[33]

ZengW H, YanJ Y, YanK, HuangX, WangX F, ChengS S. Modeling a symmetrically-notched continuum neurosurgical robot with non-constant curvature and superelastic property. IEEE Robotics and Automation Letters, 2021, 6( 4): 6489– 6496

[34]

SinghI, AmaraY, MelinguiA, Mani PathakP, MerzoukiR. Modeling of continuum manipulators using pythagorean hodograph curves. Soft Robotics, 2018, 5( 4): 425– 442

[35]

GodageI S, Medrano-CerdaG A, BransonD T, GuglielminoE, CaldwellD G. Modal kinematics for multisection continuum arms. Bioinspiration & Biomimetics, 2015, 10( 3): 035002

[36]

YangJ Z, PengH J, ZhouW Y, ZhangJ, WuZ G. A modular approach for dynamic modeling of multisegment continuum robots. Mechanism and Machine Theory, 2021, 165 : 104429

[37]

YuanH, ZhouL L, XuW F. A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mechanism and Machine Theory, 2019, 135 : 130– 149

[38]

HuangX J, ZouJ, GuG Y. Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Transactions on Mechatronics, 2021, 26( 6): 3175– 3185

[39]

BiezeT M, LargilliereF, KruszewskiA, ZhangZ K, MerzoukiR, DuriezC. Finite element method-based kinematics and closed-loop control of soft, continuum manipulators. Soft Robotics, 2018, 5( 3): 348– 364

[40]

SadatiS M H, ShivaA, RensonL, RuckerC, AlthoeferK, NanayakkaraT, BergelesC, HauserH, WalkerI D. Reduced order vs. discretized lumped system models with absolute and relative states for continuum manipulators. In: Proceedings of Royal Statistics Society International Conference. Belfast, 2019, 1– 10

[41]

GodageI S, WirzR, WalkerI D, WebsterIIIR J. Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach. Soft Robotics, 2015, 2( 3): 96– 106

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6696KB)

7470

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/