Ultrasonic measurement of tie-bar stress for die-casting machine

Chaojie ZHUO, Peng ZHAO, Kaipeng JI, Jun XIE, Sheng YE, Peng CHENG, Jianzhong FU

PDF(3727 KB)
PDF(3727 KB)
Front. Mech. Eng. ›› 2022, Vol. 17 ›› Issue (1) : 7. DOI: 10.1007/s11465-021-0663-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Ultrasonic measurement of tie-bar stress for die-casting machine

Author information +
History +

Abstract

In die casting, the real-time measurement of the stress of the tie-bar helps ensure product quality and protect the machine itself. However, the traditional magnetic-attached strain gauge is installed in the mold and product operating area, which hinders the loading and unloading of the mold and the collection of die castings. In this paper, a method for real-time measurement of stress using ultrasonic technology is proposed. The stress variation of the tie-bar is analyzed, and a mathematical model between ultrasonic signal and stress based on acoustoelastic theory is established. Verification experiments show that the proposed method agrees with the strain gauge, and the maximum of the difference square is only 1.5678 (MPa)2. Furthermore, single-factor experiments are conducted. A higher ultrasonic frequency produces a better measurement accuracy, and the mean of difference squares at 2.5 and 5 MHz are 2.3234 and 0.6733 (MPa)2, respectively. Measurement accuracy is insensitive to probe location and tonnage of the die-casting machine. Moreover, the ultrasonic measurement method can be used to monitor clamping health status and inspect the dynamic pulling force of the tie-bar. This approach has the advantages of high precision, high repeatability, easy installation, and noninterference, which helps guide the production in die casting.

Graphical abstract

Keywords

die-casting / tie-bar stress / acoustoelastic theory / ultrasonic measurement / dynamic inspection

Cite this article

Download citation ▾
Chaojie ZHUO, Peng ZHAO, Kaipeng JI, Jun XIE, Sheng YE, Peng CHENG, Jianzhong FU. Ultrasonic measurement of tie-bar stress for die-casting machine. Front. Mech. Eng., 2022, 17(1): 7 https://doi.org/10.1007/s11465-021-0663-1

References

[1]
ShahaneS, AluruN, FerreiraP, KapoorS G, VankaS P. Optimization of solidification in die casting using numerical simulations and machine learning. Journal of Manufacturing Processes, 2020, 51 : 130– 141
CrossRef Google scholar
[2]
LiuW P, PengT, TangR Z, UmedaY, HuL K. An internet of things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes. Energy, 2020, 202 : 117716
CrossRef Google scholar
[3]
GreßT, MittlerT, ChenH, StahlJ, SchmidS, KhalifaN B, VolkW. Production of aluminum AA7075/6060 compounds by die casting and hot extrusion. Journal of Materials Processing Technology, 2020, 280 : 116594
CrossRef Google scholar
[4]
LeeJ, LeeY C, KimJ T. Migration from the traditional to the smart factory in the die-casting industry: novel process data acquisition and fault detection based on artificial neural network. Journal of Materials Processing Technology, 2021, 290 : 116972
CrossRef Google scholar
[5]
WeilerJ P. A review of magnesium die-castings for closure applications. Journal of Magnesium and Alloys, 2019, 7( 2): 297– 304
CrossRef Google scholar
[6]
YooM, SongJ, OhJ, KangS, KimK, YangS, MoonM. Development of a bus armrest fabrication process with a high-vacuum, high-pressure die-casting process using the AM60 alloy. Robotics and Computer-Integrated Manufacturing, 2019, 55 : 154– 159
CrossRef Google scholar
[7]
CornacchiaG, DioniD, FaccoliM, GislonC, SolazziL, PanviniA, CecchelS. Experimental and numerical study of an automotive component produced with innovative ceramic core in high pressure die casting (HPDC). Metals, 2019, 9( 2): 217
CrossRef Google scholar
[8]
JeongS I, JinC K, SeoH Y, KimJ D, KangC G. Mold structure design and casting simulation of the high-pressure die casting for aluminum automotive clutch housing manufacturing. The International Journal of Advanced Manufacturing Technology, 2016, 84 : 1561– 1572
CrossRef Google scholar
[9]
PisarekB P, KołakowskiD, PacyniakT. Simulation of stress distribution in a thick-walled bushing produced by die-casting. Archives of Foundry Engineering, 2017, 17( 4): 127– 132
CrossRef Google scholar
[10]
CaoH J, ChenE, YiH, LiH C, ZhuL Q, WenX H. Multi-level energy efficiency evaluation for die casting workshop based on fog-cloud computing. Energy, 2021, 226 : 120397
CrossRef Google scholar
[11]
DongX X, FengL Y, WangS H, NybergE A, JiS X. A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. Journal of Magnesium and Alloys, 2021, 9( 1): 90– 101
CrossRef Google scholar
[12]
RaoB Q, ZhouH W, OuyangH B, WanY J, ZhangY H, WuJ Y. Study on the clamping force measurement and partial load regulation technology of injection molding machine. CIRP Journal of Manufacturing Science and Technology, 2017, 19 : 19– 24
CrossRef Google scholar
[13]
ChenJ W, SchlaepherB. New measurement techniques of injection molding machine clamping force. Engineering Plastics Application, 2010, 38(2): 75− 77 (in Chinese)
[14]
ChangW T, LeeW I, HsuK L. Analysis and experimental verification of mechanical errors in nine-link type double-toggle mold/die clamping mechanisms. Applied Sciences (Basel, Switzerland), 2021, 11( 2): 832
CrossRef Google scholar
[15]
FuK X, ZhengZ X, ZhangH W. Design of double-toggle clamping mechanism for die-casting machine based on the multi-body dynamics and finite element method. Applied Mechanics and Materials, 2013, 427–429: 179– 186
[16]
PhaniK K, NiyogiS K, MaitraA K, RoychaudhuryM. Strength and elastic modulus of a porous brittle solid: an acousto-ultrasonic study. Journal of Materials Science, 1986, 21( 12): 4335– 4341
CrossRef Google scholar
[17]
PrasathR, DanylukS, ZagarolaS. Non-contact stress measurement in PET preforms. Polymer-Plastics Technology and Materials, 2019, 58( 16): 1802– 1809
CrossRef Google scholar
[18]
BrayD E, TangW. Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave. Nuclear Engineering and Design, 2001, 207( 2): 231– 240
CrossRef Google scholar
[19]
KimJ, ParkJ H, JhangK Y. Decoupled longitudinal and lateral vehicle control based autonomous lane change system adaptable to driving surroundings. IEEE Access: Practical Innovations, Open Solutions, 2021, 9 : 4315– 4334
CrossRef Google scholar
[20]
AyadiA, CulioliJ, AbouelkaramS. Sonoelasticity to monitor mechanical changes during rigor and ageing. Meat Science, 2007, 76( 2): 321– 326
CrossRef Google scholar
[21]
ZhaoP, ZhaoY, ZhangJ F, HuangJ Y, XiaN, FuJ Z. Ultrasonic measurement of clamping force for injection molding machine. Journal of Polymer Engineering, 2019, 39( 4): 388– 396
CrossRef Google scholar
[22]
ZhaoY, ZhaoP, ZhangJ F, HuangJ Y, XiaN, FuJ Z. On-line measurement of clamping force for injection molding machine using ultrasonic technology. Ultrasonics, 2019, 91 : 170– 179
CrossRef Google scholar
[23]
CecchelS, CornacchiaG, PanviniA. Cradle-to-gate impact assessment of a high-pressure die-casting safety-relevant automotive component. JOM, 2016, 68( 9): 2443– 2448
CrossRef Google scholar
[24]
TokuokaT, IwashimizuY. Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials. International Journal of Solids and Structures, 1968, 4( 3): 383– 389
CrossRef Google scholar
[25]
ZengL, CaoX W, HuangL P, LuoZ. The measurement of lamb wave phase velocity using analytic cross-correlation method. Mechanical Systems and Signal Processing, 2021, 151 : 107387
CrossRef Google scholar
[26]
XiaoW F, YuL Y, JosephR, GiurgiutiuV. Fatigue-crack detection and monitoring through the scattered-wave two-dimensional cross-correlation imaging method using piezoelectric transducers. Sensors (Basel), 2020, 20( 11): 3035
CrossRef Google scholar
[27]
FanZ Q, QiuQ, SuJ, ZhangT H, LinY. Phase noise measurement of an optoelectronic oscillator based on the photonic-delay line cross-correlation method. Optics Letters, 2019, 44( 8): 1992– 1995
CrossRef Google scholar
[28]
LiY, YuS S, DaiL, LuoT F, LiM. Acoustic emission signal source localization on plywood surface with cross-correlation method. Journal of Wood Science, 2018, 64( 2): 78– 84
CrossRef Google scholar
[29]
KomuraI, NagaiS, KashiwayaH, MoriT, AriiM. Improved ultrasonic testing by phased array technique and its application. Nuclear Engineering and Design, 1985, 87 : 185– 191
CrossRef Google scholar
[30]
WangJ G, DengZ F, YangB H, MaS W, FeiM R, LiuL L, YaoY, Chen T, WuY P. Simultaneous identification of parameter and time-delay based on subspace method and cross-correlation function. In: Proceedings of the 36th Chinese Control Conference (CCC). 2017, 2287– 2292
[31]
YamamotoN. New method of determining ultrasonic wavelength in liquid. Review of Scientific Instruments, 1954, 25( 10): 949– 950
CrossRef Google scholar

Nomenclature

D Ultrasonic probe diameter
E Elastic modulus
f Ultrasonic probe frequency
K Acoustoelastic coefficient
K1 Material coefficient
l, m The third-order elasticity coefficients
n Number of experiments
Δt Ultrasonic time difference
r Standard deviation
rs Standard deviation of strain gauge
ru Standard deviation of ultrasonic
s0 Natural length of the tie-bar with no stress
s1 Length of the tie-bar with σ stress
t0 Ultrasonic propagation time with no stress
t1 Ultrasonic propagation time with σ stress
v Ultrasonic wave speed
v0 Velocity with no stress
vσ Velocity with σ stress
w Ultrasonic wavelength
σ Stress of the tie-bar
σi Stress measured by the strain gauge
σj Stress measured by the ultrasonic method
ε Strain
ρ0 Density of the tie-bar
λ, μ The second-order elastic coefficients
θ0 Half divergence angle of the ultrasound
δ¯ Difference square
δ¯ave Mean of the difference squares
δ¯max Maximum of the difference square

Appendix

Table A1 Ultrasonic measurement results of verification experiments

Pulling force/kN σi/MPa σj/MPa δ¯/(MPa)2 δ¯max/(MPa)2 rs/MPa ru/MPa
100 6.23628 6.8461 1.5678 1.5678 0.0486 0
6.30124 6.8461
6.30124 6.8461
6.23628 6.8461
6.36620 6.8461
300 18.3840 19.1067 1.3876 0.0118 0
18.6439 19.1067
18.7088 19.1067
18.6439 19.1067
18.5789 19.1067
500 31.5711 31.9511 0.3181 0.0862 0
31.8310 31.9511
31.7011 31.9511
31.7660 31.9511
31.7011 31.9511
700 44.1736 44.2117 0.0234 0.0636 0
44.1736 44.2117
44.1087 44.2117
44.1736 44.2117
44.3035 44.2117
900 57.7505 57.6399 0.0696 0.0411 0
57.7505 57.6399
57.8155 57.6399
57.7505 57.6399
57.6855 57.6399

Table A2 Measurement results of ultrasonic and strain gauge of #3 tie-bar with different ultrasonic probe frequencies

Probe frequency/MHz Pulling force/kN σi/MPa Δt/ns σj/MPa δ¯/(MPa)2 δ¯ave/(MPa)2
2.5 100 6.04139 104.948 6.2621 0.3094 2.3234
5.97643 104.948 6.2621
6.04139 104.948 6.2621
6.04139 104.948 6.2621
5.97643 104.948 6.2621
300 19.5533 335.832 19.1062 1.1865
19.6183 335.832 19.1062
19.5533 335.832 19.1062
19.6183 335.832 19.1062
19.6183 335.832 19.1062
2.5 500 31.7011 566.717 31.9503 0.1754 2.3234
31.7660 566.717 31.9503
31.7011 566.717 31.9503
31.8959 566.717 31.9503
31.8310 566.717 31.9503
700 45.4728 797.601 44.7945 2.0490
45.4079 797.601 44.7945
45.4079 797.601 44.7945
45.4728 797.601 44.7945
45.4079 797.601 44.7945
900 57.5556 1007.496 56.4709 7.8967
57.8155 1007.496 56.4709
57.7505 1007.496 56.4709
57.7505 1007.496 56.4709
57.7505 1007.496 56.4709
5 100 6.23628 115.445 6.8461 1.5678 0.6733
6.30124 115.445 6.8461
6.30124 115.445 6.8461
6.23628 115.445 6.8461
6.36620 115.445 6.8461
300 18.3840 335.840 19.1067 1.3876
18.6439 335.840 19.1067
18.7088 335.840 19.1067
18.6439 335.840 19.1067
18.5789 335.840 19.1067
500 31.5711 566.730 31.9511 0.3181
31.8310 566.730 31.9511
31.7011 566.730 31.9511
31.7660 566.730 31.9511
31.7011 566.730 31.9511
700 44.1736 787.125 44.2117 0.0234
44.1736 787.125 44.2117
44.1087 787.125 44.2117
44.1736 787.125 44.2117
44.3035 787.125 44.2117
900 57.7505 1028.510 57.6399 0.0696
57.7505 1028.510 57.6399
57.8155 1028.510 57.6399
57.7505 1028.510 57.6399
57.6855 1028.510 57.6399

Table A3 Measurement results of ultrasonic and strain gauge of #3 tie-bar of different ultrasonic probe locations

Probe location Pulling force/kN σi/MPa Δt/ns σj/MPa δ¯/(MPa)2 δ¯ave/(MPa)2
Near positioning hole 100 6.23628 115.445 6.8461 1.5678 0.6733
6.30124 115.445 6.8461
6.30124 115.445 6.8461
6.23628 115.445 6.8461
6.36620 115.445 6.8461
300 18.3840 335.840 19.1067 1.3876
18.6439 335.840 19.1067
18.7088 335.840 19.1067
18.6439 335.840 19.1067
18.5789 335.840 19.1067
500 31.5711 566.730 31.9511 0.3181
31.8310 566.730 31.9511
31.7011 566.730 31.9511
31.7660 566.730 31.9511
31.7011 566.730 31.9511
700 44.1736 787.125 44.2117 0.0234
44.1736 787.125 44.2117
44.1087 787.125 44.2117
44.1736 787.125 44.2117
44.3035 787.125 44.2117
900 57.7505 1028.510 57.6399 0.0696
57.7505 1028.510 57.6399
57.8155 1028.510 57.6399
57.7505 1028.510 57.6399
57.6855 1028.510 57.6399
Near radius 100 6.3662 115.445 6.3272 0.0220 0.0105
6.4312 115.445 6.3272
6.3012 115.445 6.3272
6.3012 115.445 6.3272
6.2363 115.445 6.3272
300 19.5533 346.335 19.5533 0.0085
19.6183 346.335 19.5533
19.5533 346.335 19.5533
19.5533 346.335 19.5533
19.4883 346.335 19.5533
500 31.7011 556.235 31.7141 0.0118
31.7660 556.235 31.7141
31.7660 556.235 31.7141
31.7011 556.235 31.7141
31.6361 556.235 31.7141
700 45.4728 808.115 45.4469 0.0051
45.4079 808.115 45.4469
45.4079 808.115 45.4469
45.4728 808.115 45.4469
45.4728 808.115 45.4469
900 58.4651 1039.005 58.4911 0.0051
58.5300 1039.005 58.4911
58.4651 1039.005 58.4911
58.5300 1039.005 58.4911
58.4651 1039.005 58.4911

Table A4 Measurement results of ultrasonic and strain gauge of #3 tie-bar with different tonnages of die-casting machine

Mechanical tonnage/t Pulling force/kN σi/MPa Δt/ns σj/MPa δ¯/(MPa)2 δ¯ave/(MPa)2
400 100 6.3662 115.445 6.3272 0.0220 0.0105
6.4312 115.445 6.3272
6.3012 115.445 6.3272
6.3012 115.445 6.3272
6.2363 115.445 6.3272
300 19.5533 346.335 19.5533 0.0085
19.6183 346.335 19.5533
19.5533 346.335 19.5533
19.5533 346.335 19.5533
19.4883 346.335 19.5533
500 31.7011 556.235 31.7141 0.0118
31.7660 556.235 31.7141
31.7660 556.235 31.7141
31.7011 556.235 31.7141
31.6361 556.235 31.7141
700 45.4728 808.115 45.4469 0.0051
45.4079 808.115 45.4469
45.4079 808.115 45.4469
45.4728 808.115 45.4469
45.4728 808.115 45.4469
900 58.4651 1039.005 58.4911 0.0051
58.5300 1039.005 58.4911
58.4651 1039.005 58.4911
58.5300 1039.005 58.4911
58.4651 1039.005 58.4911
800 200 6.1017 298.8505 6.0664 0.0034 0.0332
6.1369 298.8505 6.0664
6.0311 298.8505 6.0664
5.9606 298.8505 6.0664
6.1017 298.8505 6.0664
600 21.4793 1065.4670 21.7050 0.0326
21.7262 1065.4670 21.7050
21.8320 1065.4670 21.7050
21.7262 1065.4670 21.7050
21.7615 1065.4670 21.7050
1000 34.6702 1721.6388 34.9453 0.0512
35.0934 1721.6388 34.9453
35.0229 1721.6388 34.9453
34.9524 1721.6388 34.9453
34.9876 1721.6388 34.9453
1400 48.0022 2390.8040 48.1362 0.0434
47.9317 2390.8040 48.1362
48.0375 2390.8040 48.1362
48.3802 2390.8040 48.1362
48.3196 2390.8040 48.1362
1800 64.4026 3196.4010 64.4802 0.0343
64.6143 3196.4010 64.4802
64.4379 3196.4010 64.4802
64.5790 3196.4010 64.4802
64.3674 3196.4010 64.4802

Acknowledgements

The authors acknowledge the financial support of the Key Project of Science and Technology Innovation 2025 of Ningbo City, China (Grant No. 2020Z018), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province, China (Grant No. 2022C01069), the National Natural Science Foundation of China (Grant No. 51875519), and the Project of Innovation Enterprises Union of Ningbo City, China (Grant No. 2021H002).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3727 KB)

Accesses

Citations

Detail

Sections
Recommended

/