Ultrasonic measurement of tie-bar stress for die-casting machine
Chaojie ZHUO, Peng ZHAO, Kaipeng JI, Jun XIE, Sheng YE, Peng CHENG, Jianzhong FU
Ultrasonic measurement of tie-bar stress for die-casting machine
In die casting, the real-time measurement of the stress of the tie-bar helps ensure product quality and protect the machine itself. However, the traditional magnetic-attached strain gauge is installed in the mold and product operating area, which hinders the loading and unloading of the mold and the collection of die castings. In this paper, a method for real-time measurement of stress using ultrasonic technology is proposed. The stress variation of the tie-bar is analyzed, and a mathematical model between ultrasonic signal and stress based on acoustoelastic theory is established. Verification experiments show that the proposed method agrees with the strain gauge, and the maximum of the difference square is only 1.5678 (MPa)2. Furthermore, single-factor experiments are conducted. A higher ultrasonic frequency produces a better measurement accuracy, and the mean of difference squares at 2.5 and 5 MHz are 2.3234 and 0.6733 (MPa)2, respectively. Measurement accuracy is insensitive to probe location and tonnage of the die-casting machine. Moreover, the ultrasonic measurement method can be used to monitor clamping health status and inspect the dynamic pulling force of the tie-bar. This approach has the advantages of high precision, high repeatability, easy installation, and noninterference, which helps guide the production in die casting.
die-casting / tie-bar stress / acoustoelastic theory / ultrasonic measurement / dynamic inspection
[1] |
ShahaneS, AluruN, FerreiraP, KapoorS G, VankaS P. Optimization of solidification in die casting using numerical simulations and machine learning. Journal of Manufacturing Processes, 2020, 51 : 130– 141
CrossRef
Google scholar
|
[2] |
LiuW P, PengT, TangR Z, UmedaY, HuL K. An internet of things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes. Energy, 2020, 202 : 117716
CrossRef
Google scholar
|
[3] |
GreßT, MittlerT, ChenH, StahlJ, SchmidS, KhalifaN B, VolkW. Production of aluminum AA7075/6060 compounds by die casting and hot extrusion. Journal of Materials Processing Technology, 2020, 280 : 116594
CrossRef
Google scholar
|
[4] |
LeeJ, LeeY C, KimJ T. Migration from the traditional to the smart factory in the die-casting industry: novel process data acquisition and fault detection based on artificial neural network. Journal of Materials Processing Technology, 2021, 290 : 116972
CrossRef
Google scholar
|
[5] |
WeilerJ P. A review of magnesium die-castings for closure applications. Journal of Magnesium and Alloys, 2019, 7( 2): 297– 304
CrossRef
Google scholar
|
[6] |
YooM, SongJ, OhJ, KangS, KimK, YangS, MoonM. Development of a bus armrest fabrication process with a high-vacuum, high-pressure die-casting process using the AM60 alloy. Robotics and Computer-Integrated Manufacturing, 2019, 55 : 154– 159
CrossRef
Google scholar
|
[7] |
CornacchiaG, DioniD, FaccoliM, GislonC, SolazziL, PanviniA, CecchelS. Experimental and numerical study of an automotive component produced with innovative ceramic core in high pressure die casting (HPDC). Metals, 2019, 9( 2): 217
CrossRef
Google scholar
|
[8] |
JeongS I, JinC K, SeoH Y, KimJ D, KangC G. Mold structure design and casting simulation of the high-pressure die casting for aluminum automotive clutch housing manufacturing. The International Journal of Advanced Manufacturing Technology, 2016, 84 : 1561– 1572
CrossRef
Google scholar
|
[9] |
PisarekB P, KołakowskiD, PacyniakT. Simulation of stress distribution in a thick-walled bushing produced by die-casting. Archives of Foundry Engineering, 2017, 17( 4): 127– 132
CrossRef
Google scholar
|
[10] |
CaoH J, ChenE, YiH, LiH C, ZhuL Q, WenX H. Multi-level energy efficiency evaluation for die casting workshop based on fog-cloud computing. Energy, 2021, 226 : 120397
CrossRef
Google scholar
|
[11] |
DongX X, FengL Y, WangS H, NybergE A, JiS X. A new die-cast magnesium alloy for applications at higher elevated temperatures of 200–300 °C. Journal of Magnesium and Alloys, 2021, 9( 1): 90– 101
CrossRef
Google scholar
|
[12] |
RaoB Q, ZhouH W, OuyangH B, WanY J, ZhangY H, WuJ Y. Study on the clamping force measurement and partial load regulation technology of injection molding machine. CIRP Journal of Manufacturing Science and Technology, 2017, 19 : 19– 24
CrossRef
Google scholar
|
[13] |
ChenJ W, SchlaepherB. New measurement techniques of injection molding machine clamping force. Engineering Plastics Application, 2010, 38(2): 75− 77 (in Chinese)
|
[14] |
ChangW T, LeeW I, HsuK L. Analysis and experimental verification of mechanical errors in nine-link type double-toggle mold/die clamping mechanisms. Applied Sciences (Basel, Switzerland), 2021, 11( 2): 832
CrossRef
Google scholar
|
[15] |
FuK X, ZhengZ X, ZhangH W. Design of double-toggle clamping mechanism for die-casting machine based on the multi-body dynamics and finite element method. Applied Mechanics and Materials, 2013, 427–429: 179– 186
|
[16] |
PhaniK K, NiyogiS K, MaitraA K, RoychaudhuryM. Strength and elastic modulus of a porous brittle solid: an acousto-ultrasonic study. Journal of Materials Science, 1986, 21( 12): 4335– 4341
CrossRef
Google scholar
|
[17] |
PrasathR, DanylukS, ZagarolaS. Non-contact stress measurement in PET preforms. Polymer-Plastics Technology and Materials, 2019, 58( 16): 1802– 1809
CrossRef
Google scholar
|
[18] |
BrayD E, TangW. Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave. Nuclear Engineering and Design, 2001, 207( 2): 231– 240
CrossRef
Google scholar
|
[19] |
KimJ, ParkJ H, JhangK Y. Decoupled longitudinal and lateral vehicle control based autonomous lane change system adaptable to driving surroundings. IEEE Access: Practical Innovations, Open Solutions, 2021, 9 : 4315– 4334
CrossRef
Google scholar
|
[20] |
AyadiA, CulioliJ, AbouelkaramS. Sonoelasticity to monitor mechanical changes during rigor and ageing. Meat Science, 2007, 76( 2): 321– 326
CrossRef
Google scholar
|
[21] |
ZhaoP, ZhaoY, ZhangJ F, HuangJ Y, XiaN, FuJ Z. Ultrasonic measurement of clamping force for injection molding machine. Journal of Polymer Engineering, 2019, 39( 4): 388– 396
CrossRef
Google scholar
|
[22] |
ZhaoY, ZhaoP, ZhangJ F, HuangJ Y, XiaN, FuJ Z. On-line measurement of clamping force for injection molding machine using ultrasonic technology. Ultrasonics, 2019, 91 : 170– 179
CrossRef
Google scholar
|
[23] |
CecchelS, CornacchiaG, PanviniA. Cradle-to-gate impact assessment of a high-pressure die-casting safety-relevant automotive component. JOM, 2016, 68( 9): 2443– 2448
CrossRef
Google scholar
|
[24] |
TokuokaT, IwashimizuY. Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials. International Journal of Solids and Structures, 1968, 4( 3): 383– 389
CrossRef
Google scholar
|
[25] |
ZengL, CaoX W, HuangL P, LuoZ. The measurement of lamb wave phase velocity using analytic cross-correlation method. Mechanical Systems and Signal Processing, 2021, 151 : 107387
CrossRef
Google scholar
|
[26] |
XiaoW F, YuL Y, JosephR, GiurgiutiuV. Fatigue-crack detection and monitoring through the scattered-wave two-dimensional cross-correlation imaging method using piezoelectric transducers. Sensors (Basel), 2020, 20( 11): 3035
CrossRef
Google scholar
|
[27] |
FanZ Q, QiuQ, SuJ, ZhangT H, LinY. Phase noise measurement of an optoelectronic oscillator based on the photonic-delay line cross-correlation method. Optics Letters, 2019, 44( 8): 1992– 1995
CrossRef
Google scholar
|
[28] |
LiY, YuS S, DaiL, LuoT F, LiM. Acoustic emission signal source localization on plywood surface with cross-correlation method. Journal of Wood Science, 2018, 64( 2): 78– 84
CrossRef
Google scholar
|
[29] |
KomuraI, NagaiS, KashiwayaH, MoriT, AriiM. Improved ultrasonic testing by phased array technique and its application. Nuclear Engineering and Design, 1985, 87 : 185– 191
CrossRef
Google scholar
|
[30] |
WangJ G, DengZ F, YangB H, MaS W, FeiM R, LiuL L, YaoY, Chen T, WuY P. Simultaneous identification of parameter and time-delay based on subspace method and cross-correlation function. In: Proceedings of the 36th Chinese Control Conference (CCC). 2017, 2287– 2292
|
[31] |
YamamotoN. New method of determining ultrasonic wavelength in liquid. Review of Scientific Instruments, 1954, 25( 10): 949– 950
CrossRef
Google scholar
|
D | Ultrasonic probe diameter |
E | Elastic modulus |
f | Ultrasonic probe frequency |
K | Acoustoelastic coefficient |
K1 | Material coefficient |
l, m | The third-order elasticity coefficients |
n | Number of experiments |
Δt | Ultrasonic time difference |
r | Standard deviation |
rs | Standard deviation of strain gauge |
ru | Standard deviation of ultrasonic |
s0 | Natural length of the tie-bar with no stress |
s1 | Length of the tie-bar with σ stress |
t0 | Ultrasonic propagation time with no stress |
t1 | Ultrasonic propagation time with σ stress |
v | Ultrasonic wave speed |
v0 | Velocity with no stress |
vσ | Velocity with σ stress |
w | Ultrasonic wavelength |
σ | Stress of the tie-bar |
σi | Stress measured by the strain gauge |
σj | Stress measured by the ultrasonic method |
ε | Strain |
ρ0 | Density of the tie-bar |
λ, μ | The second-order elastic coefficients |
θ0 | Half divergence angle of the ultrasound |
Difference square | |
Mean of the difference squares | |
Maximum of the difference square |
Table A1 Ultrasonic measurement results of verification experiments
Pulling force/kN | /MPa | /MPa | /(MPa)2 | /(MPa)2 | /MPa | /MPa |
---|---|---|---|---|---|---|
100 | 6.23628 | 6.8461 | 1.5678 | 1.5678 | 0.0486 | 0 |
6.30124 | 6.8461 | |||||
6.30124 | 6.8461 | |||||
6.23628 | 6.8461 | |||||
6.36620 | 6.8461 | |||||
300 | 18.3840 | 19.1067 | 1.3876 | 0.0118 | 0 | |
18.6439 | 19.1067 | |||||
18.7088 | 19.1067 | |||||
18.6439 | 19.1067 | |||||
18.5789 | 19.1067 | |||||
500 | 31.5711 | 31.9511 | 0.3181 | 0.0862 | 0 | |
31.8310 | 31.9511 | |||||
31.7011 | 31.9511 | |||||
31.7660 | 31.9511 | |||||
31.7011 | 31.9511 | |||||
700 | 44.1736 | 44.2117 | 0.0234 | 0.0636 | 0 | |
44.1736 | 44.2117 | |||||
44.1087 | 44.2117 | |||||
44.1736 | 44.2117 | |||||
44.3035 | 44.2117 | |||||
900 | 57.7505 | 57.6399 | 0.0696 | 0.0411 | 0 | |
57.7505 | 57.6399 | |||||
57.8155 | 57.6399 | |||||
57.7505 | 57.6399 | |||||
57.6855 | 57.6399 |
Table A2 Measurement results of ultrasonic and strain gauge of #3 tie-bar with different ultrasonic probe frequencies
Probe frequency/MHz | Pulling force/kN | /MPa | /ns | /MPa | /(MPa)2 | /(MPa)2 |
---|---|---|---|---|---|---|
2.5 | 100 | 6.04139 | 104.948 | 6.2621 | 0.3094 | 2.3234 |
5.97643 | 104.948 | 6.2621 | ||||
6.04139 | 104.948 | 6.2621 | ||||
6.04139 | 104.948 | 6.2621 | ||||
5.97643 | 104.948 | 6.2621 | ||||
300 | 19.5533 | 335.832 | 19.1062 | 1.1865 | ||
19.6183 | 335.832 | 19.1062 | ||||
19.5533 | 335.832 | 19.1062 | ||||
19.6183 | 335.832 | 19.1062 | ||||
19.6183 | 335.832 | 19.1062 | ||||
2.5 | 500 | 31.7011 | 566.717 | 31.9503 | 0.1754 | 2.3234 |
31.7660 | 566.717 | 31.9503 | ||||
31.7011 | 566.717 | 31.9503 | ||||
31.8959 | 566.717 | 31.9503 | ||||
31.8310 | 566.717 | 31.9503 | ||||
700 | 45.4728 | 797.601 | 44.7945 | 2.0490 | ||
45.4079 | 797.601 | 44.7945 | ||||
45.4079 | 797.601 | 44.7945 | ||||
45.4728 | 797.601 | 44.7945 | ||||
45.4079 | 797.601 | 44.7945 | ||||
900 | 57.5556 | 1007.496 | 56.4709 | 7.8967 | ||
57.8155 | 1007.496 | 56.4709 | ||||
57.7505 | 1007.496 | 56.4709 | ||||
57.7505 | 1007.496 | 56.4709 | ||||
57.7505 | 1007.496 | 56.4709 | ||||
5 | 100 | 6.23628 | 115.445 | 6.8461 | 1.5678 | 0.6733 |
6.30124 | 115.445 | 6.8461 | ||||
6.30124 | 115.445 | 6.8461 | ||||
6.23628 | 115.445 | 6.8461 | ||||
6.36620 | 115.445 | 6.8461 | ||||
300 | 18.3840 | 335.840 | 19.1067 | 1.3876 | ||
18.6439 | 335.840 | 19.1067 | ||||
18.7088 | 335.840 | 19.1067 | ||||
18.6439 | 335.840 | 19.1067 | ||||
18.5789 | 335.840 | 19.1067 | ||||
500 | 31.5711 | 566.730 | 31.9511 | 0.3181 | ||
31.8310 | 566.730 | 31.9511 | ||||
31.7011 | 566.730 | 31.9511 | ||||
31.7660 | 566.730 | 31.9511 | ||||
31.7011 | 566.730 | 31.9511 | ||||
700 | 44.1736 | 787.125 | 44.2117 | 0.0234 | ||
44.1736 | 787.125 | 44.2117 | ||||
44.1087 | 787.125 | 44.2117 | ||||
44.1736 | 787.125 | 44.2117 | ||||
44.3035 | 787.125 | 44.2117 | ||||
900 | 57.7505 | 1028.510 | 57.6399 | 0.0696 | ||
57.7505 | 1028.510 | 57.6399 | ||||
57.8155 | 1028.510 | 57.6399 | ||||
57.7505 | 1028.510 | 57.6399 | ||||
57.6855 | 1028.510 | 57.6399 |
Table A3 Measurement results of ultrasonic and strain gauge of #3 tie-bar of different ultrasonic probe locations
Probe location | Pulling force/kN | /MPa | /ns | /MPa | /(MPa)2 | /(MPa)2 |
---|---|---|---|---|---|---|
Near positioning hole | 100 | 6.23628 | 115.445 | 6.8461 | 1.5678 | 0.6733 |
6.30124 | 115.445 | 6.8461 | ||||
6.30124 | 115.445 | 6.8461 | ||||
6.23628 | 115.445 | 6.8461 | ||||
6.36620 | 115.445 | 6.8461 | ||||
300 | 18.3840 | 335.840 | 19.1067 | 1.3876 | ||
18.6439 | 335.840 | 19.1067 | ||||
18.7088 | 335.840 | 19.1067 | ||||
18.6439 | 335.840 | 19.1067 | ||||
18.5789 | 335.840 | 19.1067 | ||||
500 | 31.5711 | 566.730 | 31.9511 | 0.3181 | ||
31.8310 | 566.730 | 31.9511 | ||||
31.7011 | 566.730 | 31.9511 | ||||
31.7660 | 566.730 | 31.9511 | ||||
31.7011 | 566.730 | 31.9511 | ||||
700 | 44.1736 | 787.125 | 44.2117 | 0.0234 | ||
44.1736 | 787.125 | 44.2117 | ||||
44.1087 | 787.125 | 44.2117 | ||||
44.1736 | 787.125 | 44.2117 | ||||
44.3035 | 787.125 | 44.2117 | ||||
900 | 57.7505 | 1028.510 | 57.6399 | 0.0696 | ||
57.7505 | 1028.510 | 57.6399 | ||||
57.8155 | 1028.510 | 57.6399 | ||||
57.7505 | 1028.510 | 57.6399 | ||||
57.6855 | 1028.510 | 57.6399 | ||||
Near radius | 100 | 6.3662 | 115.445 | 6.3272 | 0.0220 | 0.0105 |
6.4312 | 115.445 | 6.3272 | ||||
6.3012 | 115.445 | 6.3272 | ||||
6.3012 | 115.445 | 6.3272 | ||||
6.2363 | 115.445 | 6.3272 | ||||
300 | 19.5533 | 346.335 | 19.5533 | 0.0085 | ||
19.6183 | 346.335 | 19.5533 | ||||
19.5533 | 346.335 | 19.5533 | ||||
19.5533 | 346.335 | 19.5533 | ||||
19.4883 | 346.335 | 19.5533 | ||||
500 | 31.7011 | 556.235 | 31.7141 | 0.0118 | ||
31.7660 | 556.235 | 31.7141 | ||||
31.7660 | 556.235 | 31.7141 | ||||
31.7011 | 556.235 | 31.7141 | ||||
31.6361 | 556.235 | 31.7141 | ||||
700 | 45.4728 | 808.115 | 45.4469 | 0.0051 | ||
45.4079 | 808.115 | 45.4469 | ||||
45.4079 | 808.115 | 45.4469 | ||||
45.4728 | 808.115 | 45.4469 | ||||
45.4728 | 808.115 | 45.4469 | ||||
900 | 58.4651 | 1039.005 | 58.4911 | 0.0051 | ||
58.5300 | 1039.005 | 58.4911 | ||||
58.4651 | 1039.005 | 58.4911 | ||||
58.5300 | 1039.005 | 58.4911 | ||||
58.4651 | 1039.005 | 58.4911 |
Table A4 Measurement results of ultrasonic and strain gauge of #3 tie-bar with different tonnages of die-casting machine
Mechanical tonnage/t | Pulling force/kN | /MPa | /ns | /MPa | /(MPa)2 | /(MPa)2 |
---|---|---|---|---|---|---|
400 | 100 | 6.3662 | 115.445 | 6.3272 | 0.0220 | 0.0105 |
6.4312 | 115.445 | 6.3272 | ||||
6.3012 | 115.445 | 6.3272 | ||||
6.3012 | 115.445 | 6.3272 | ||||
6.2363 | 115.445 | 6.3272 | ||||
300 | 19.5533 | 346.335 | 19.5533 | 0.0085 | ||
19.6183 | 346.335 | 19.5533 | ||||
19.5533 | 346.335 | 19.5533 | ||||
19.5533 | 346.335 | 19.5533 | ||||
19.4883 | 346.335 | 19.5533 | ||||
500 | 31.7011 | 556.235 | 31.7141 | 0.0118 | ||
31.7660 | 556.235 | 31.7141 | ||||
31.7660 | 556.235 | 31.7141 | ||||
31.7011 | 556.235 | 31.7141 | ||||
31.6361 | 556.235 | 31.7141 | ||||
700 | 45.4728 | 808.115 | 45.4469 | 0.0051 | ||
45.4079 | 808.115 | 45.4469 | ||||
45.4079 | 808.115 | 45.4469 | ||||
45.4728 | 808.115 | 45.4469 | ||||
45.4728 | 808.115 | 45.4469 | ||||
900 | 58.4651 | 1039.005 | 58.4911 | 0.0051 | ||
58.5300 | 1039.005 | 58.4911 | ||||
58.4651 | 1039.005 | 58.4911 | ||||
58.5300 | 1039.005 | 58.4911 | ||||
58.4651 | 1039.005 | 58.4911 | ||||
800 | 200 | 6.1017 | 298.8505 | 6.0664 | 0.0034 | 0.0332 |
6.1369 | 298.8505 | 6.0664 | ||||
6.0311 | 298.8505 | 6.0664 | ||||
5.9606 | 298.8505 | 6.0664 | ||||
6.1017 | 298.8505 | 6.0664 | ||||
600 | 21.4793 | 1065.4670 | 21.7050 | 0.0326 | ||
21.7262 | 1065.4670 | 21.7050 | ||||
21.8320 | 1065.4670 | 21.7050 | ||||
21.7262 | 1065.4670 | 21.7050 | ||||
21.7615 | 1065.4670 | 21.7050 | ||||
1000 | 34.6702 | 1721.6388 | 34.9453 | 0.0512 | ||
35.0934 | 1721.6388 | 34.9453 | ||||
35.0229 | 1721.6388 | 34.9453 | ||||
34.9524 | 1721.6388 | 34.9453 | ||||
34.9876 | 1721.6388 | 34.9453 | ||||
1400 | 48.0022 | 2390.8040 | 48.1362 | 0.0434 | ||
47.9317 | 2390.8040 | 48.1362 | ||||
48.0375 | 2390.8040 | 48.1362 | ||||
48.3802 | 2390.8040 | 48.1362 | ||||
48.3196 | 2390.8040 | 48.1362 | ||||
1800 | 64.4026 | 3196.4010 | 64.4802 | 0.0343 | ||
64.6143 | 3196.4010 | 64.4802 | ||||
64.4379 | 3196.4010 | 64.4802 | ||||
64.5790 | 3196.4010 | 64.4802 | ||||
64.3674 | 3196.4010 | 64.4802 |
/
〈 | 〉 |