Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
Jiali ZHAO , Shitong PENG , Tao LI , Shengping LV , Mengyun LI , Hongchao ZHANG
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (4) : 474 -488.
Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
The rise of the engine remanufacturing industry has resulted in increased possibilities of energy conservation during the remanufacturing process, and scheduling could exert significant effects on the energy performance of manufacturing systems. However, only a few studies have specifically addressed energy-efficient scheduling for remanufacturing. Considering the uncertain processing time and routes and the operation characteristics of remanufacturing, we used the crankshaft as an illustrative case and built a fuzzy job-shop scheduling model to minimize the energy consumption during remanufacturing. An improved adaptive genetic algorithm was developed by using the hormone modulation mechanism to deal with the scheduling problem that simultaneously involves parallel machines, batch machines, and uncertain processing routes and time. The algorithm demonstrated superior performance in terms of optimal value, run time, and convergent generation in comparison with other algorithms. Computational results indicated that the optimal scheduling scheme is expected to generate 1.7 kW∙h of energy saving for the investigated problem size. In addition, the scheme could improve the energy efficiency of the crankshaft remanufacturing process by approximately 5%. This study provides a basis for production managers to improve the sustainability of remanufacturing through energy-aware scheduling.
remanufacturing scheduling / adaptive genetic algorithm / energy efficiency / sustainable remanufacturing / hormone modulation mechanism
| [1] |
|
| [2] |
|
| [3] |
International Energy Agency. World Energy Outlook 2016. Paris: Organization for Economic Co-operation and Development, 2016, 284–285 |
| [4] |
Central People’s Government of China. Notification of energy conservation and emission reduction strategy for “13th Five-Year Plan” delivered by the State Council. Available at the State Council of the People’s Republic of China website, 2018-11-20 |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |