Hot deformation behavior of a novel bimetal consisting of BTW1 and Q345R characterized by processing maps
Pengtao LIU , Lifeng MA , Weitao JIA , Tao WANG , Guanghui ZHAO
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (4) : 489 -495.
Hot deformation behavior of a novel bimetal consisting of BTW1 and Q345R characterized by processing maps
Only a few studies have been conducted on the flow behavior of the novel BTW1/Q345R bimetal, which is widely used in coal equipment. In this work, compression tests were conducted on BTW1/Q345R bimetal at a temperature range of 950 °C–1200 °C and strain rates of 0.05, 0.5, 5, and 15 s−1 by using a Gleeble-3800 thermomechanical simulator. A constitutive equation was validated by referring to the Arrhenius equation during the characterization of hot workability. The computed apparent activation energy of the BTW1/Q345R bimetal was 360 kJ/mol, and processing maps under different strain conditions were drawn. Analysis of the stress-strain relationship revealed that work hardening exerted a dominant effect on the thermal deformation of the BTW1/Q345R bimetal. The processing maps predicted that the optimal processing interval will increase with strain. Results showed that thermal deformation of the BTW1/Q345R bimetal should proceed when the temperature range varies from 1182 °C to 1200 °C and the strain rate interval is from 4.2 to 15 s−1.
BTW1/Q345R bimetal / constitutive equation / processing map / work hardening
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
/
| 〈 |
|
〉 |