A regularization scheme for explicit level-set XFEM topology optimization

Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE

PDF(4484 KB)
PDF(4484 KB)
Front. Mech. Eng. ›› 2019, Vol. 14 ›› Issue (2) : 153-170. DOI: 10.1007/s11465-019-0533-2
RESEARCH ARTICLE
RESEARCH ARTICLE

A regularization scheme for explicit level-set XFEM topology optimization

Author information +
History +

Abstract

Regularization of the level-set (LS) field is a critical part of LS-based topology optimization (TO) approaches. Traditionally this is achieved by advancing the LS field through the solution of a Hamilton-Jacobi equation combined with a reinitialization scheme. This approach, however, may limit the maximum step size and introduces discontinuities in the design process. Alternatively, energy functionals and intermediate LS value penalizations have been proposed. This paper introduces a novel LS regularization approach based on a signed distance field (SDF) which is applicable to explicit LS-based TO. The SDF is obtained using the heat method (HM) and is reconstructed for every design in the optimization process. The governing equations of the HM, as well as the ones describing the physical response of the system of interest, are discretized by the extended finite element method (XFEM). Numerical examples for problems modeled by linear elasticity, nonlinear hyperelasticity and the incompressible Navier-Stokes equations in two and three dimensions are presented to show the applicability of the proposed scheme to a broad range of design optimization problems.

Keywords

level-set regularization / explicit level-sets / XFEM / CutFEM / topology optimization / heat method / signed distance field / nonlinear structural mechanics / fluid mechanics

Cite this article

Download citation ▾
Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE. A regularization scheme for explicit level-set XFEM topology optimization. Front. Mech. Eng., 2019, 14(2): 153‒170 https://doi.org/10.1007/s11465-019-0533-2

References

[1]
Bendsøe M P, Sigmund O. Topology Optimization. Berlin: Springer, 2004
[2]
Sigmund O, Maute K. Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031–1055
CrossRef Google scholar
[3]
Deaton J D, Grandhi R V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Structural and Multidisciplinary Optimization, 2014, 49(1): 1–38
CrossRef Google scholar
[4]
Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12–49
CrossRef Google scholar
[5]
Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. Vol. 153. New York: Springer, 2003
[6]
Osher S, Paragios N. Geometric Level Set Methods in Imaging, Vision, and Graphics. New York: Springer, 2003
[7]
Gibou F, Fedkiw R, Osher S. A review of level-set methods and some recent applications. Journal of Computational Physics, 2018, 353: 82–109
CrossRef Google scholar
[8]
van Dijk N P, Maute K, Langelaar M, Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization, 2013, 48(3): 437–472
CrossRef Google scholar
[9]
Osher S J, Santosa F. Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 2001, 171(1): 272–288
CrossRef Google scholar
[10]
Allaire G, Jouve F, Toader A M. A level-set method for shape optimization. Comptes Rendus Mathématique, 2002, 334(12): 1125–1130 (in French)
CrossRef Google scholar
[11]
Wang M Y, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246
CrossRef Google scholar
[12]
Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393
CrossRef Google scholar
[13]
Wang S, Wang M Y. Radial basis functions and level set method for structural topology optimization. International Journal for Numerical Methods in Engineering, 2006, 65(12): 2060–2090
CrossRef Google scholar
[14]
Luo Z, Wang M Y, Wang S, A level set-based parameterization method for structural shape and topology optimization. International Journal for Numerical Methods in Engineering, 2008, 76(1): 1–26
CrossRef Google scholar
[15]
Kreissl S, Pingen G, Maute K. An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. International Journal for Numerical Methods in Fluids, 2011, 65(5): 496–519
CrossRef Google scholar
[16]
van Dijk N P, Langelaar M, van Keulen F. Explicit level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis. International Journal for Numerical Methods in Engineering, 2012, 91(1): 67–97
CrossRef Google scholar
[17]
de Ruiter M J, van Keulen F. Topology optimization using a topology description function. Structural and Multidisciplinary Optimization, 2004, 26(6): 406–416
CrossRef Google scholar
[18]
Haber R B, Jog C S, Bendsøe M P. A new approach to variable-topology shape design using a constraint on perimeter. Structural Optimization, 1996, 11(1): 1–12
CrossRef Google scholar
[19]
Yamada T, Izui K, Nishiwaki S, A topology optimization method based on the level set method incorporating a fictitious interface energy. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2876–2891
CrossRef Google scholar
[20]
Otomori M, Yamada T, Izui K, Level set-based topology optimisation of a compliant mechanism design using mathematical programming. Mechanical Science, 2011, 2(1): 91–98
CrossRef Google scholar
[21]
Gomes J, Faugeras O. Reconciling distance functions and level sets. Journal of Visual Communication and Image Representation, 2000, 11(2): 209–223
CrossRef Google scholar
[22]
Zhu B, Zhang X. A new level set method for topology optimization of distributed compliant mechanisms. International Journal for Numerical Methods in Engineering, 2012, 91(8): 843–871
CrossRef Google scholar
[23]
Li C, Xu C, Gui C, Level set evolution without re-initialization: A new variational formulation. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR’05). San Diego: IEEE, 2005, Vol. I, 430–436
[24]
Coffin P, Maute K. Level set topology optimization of cooling and heating devices using a simplified convection model. Structural and Multidisciplinary Optimization, 2016, 53(5): 985–1003
CrossRef Google scholar
[25]
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114(1): 146–159
CrossRef Google scholar
[26]
Osher S. Book review: Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Mathematics of Computation, 2001, 70(233): 449–451
[27]
Li C, Xu C, Gui C, Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 2010, 19(12): 3243–3254
CrossRef Google scholar
[28]
Zhu B, Zhang X, Fatikow S. Structural topology and shape optimization using a level set method with distance-suppression scheme. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1214–1239
CrossRef Google scholar
[29]
Jiang L, Chen S. Parametric structural shape & topology optimization with a variational distance-regularized level set method. Computer Methods in Applied Mechanics and Engineering, 2017, 321: 316–336
CrossRef Google scholar
[30]
Burger M, Osher S J. A survey in mathematics for industry a survey on level set methods for inverse problems and optimal design. European Journal of Applied Mathematics, 2005, 16(2): 263–301
CrossRef Google scholar
[31]
Hartmann D, Meinke M, Schröder W. The constrained reinitialization equation for level set methods. Journal of Computational Physics, 2010, 229(5): 1514–1535
CrossRef Google scholar
[32]
Fu J, Li H, Xiao M, Topology optimization of shell-infill structures using a distance regularized parametric level-set method. Structural and Multidisciplinary Optimization, 2018, 1–14 (in press)
CrossRef Google scholar
[33]
Crane K, Weischedel C, Wardetzky M. Geodesics in heat. ACM Transactions on Graphics, 2013, 32(5): 1–11
CrossRef Google scholar
[34]
Crane B K, Weischedel C, Wardetzky M. The heat method for distance computation. Communications of the ACM, 2017, 60(11): 90–99
CrossRef Google scholar
[35]
Kreissl S, Maute K. Levelset based fluid topology optimization using the extended finite element method. Structural and Multidisciplinary Optimization, 2012, 46(3): 311–326
CrossRef Google scholar
[36]
Sethian J A. Fast marching methods. SIAM Review, 1999, 41(2): 199–235
CrossRef Google scholar
[37]
Wong T, Leung S. A fast sweeping method for eikonal equations on implicit surfaces. Journal of Scientific Computing, 2016, 67(3): 837–859
CrossRef Google scholar
[38]
Daux C, Moës N, Dolbow J, Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48(12): 1741–1760
CrossRef Google scholar
[39]
Fries T P, Belytschko T. The extended/generalized finite element method: An overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253–304
CrossRef Google scholar
[40]
Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33–35): 3523–3540
CrossRef Google scholar
[41]
Makhija D, Maute K. Numerical instabilities in level set topology optimization with the extended finite element method. Structural and Multidisciplinary Optimization, 2014, 49(2): 185–197
CrossRef Google scholar
[42]
Tran A B, Yvonnet J, He Q C, A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM. International Journal for Numerical Methods in Engineering, 2011, 85(11): 1436–1459
CrossRef Google scholar
[43]
Burman E, Hansbo P. Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem. Mathematical Modelling and Numerical Analysis, 2014, 48(3): 859–874
CrossRef Google scholar
[44]
Schott B, Rasthofer U, Gravemeier V, A face-oriented stabilized Nitsche-type extended variational multiscale method for incompressible two-phase flow. International Journal for Numerical Methods in Engineering, 2015, 104(7): 721–748
CrossRef Google scholar
[45]
Villanueva C H, Maute K. CutFEM topology optimization of 3D laminar incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 2017, 320(Suppl C): 444–473
CrossRef Google scholar
[46]
Burman E, Claus S, Hansbo P, CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 2015, 104(7): 472–501
CrossRef Google scholar
[47]
Nitsche J A. On a variational principle for the solution of Dirichlet problems under the use of subspaces which are subject to no boundary conditions. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1971, 36(1): 9–15 (in German)
CrossRef Google scholar
[48]
Amestoy P R, Guermouche A, L’Excellent J Y, Hybrid scheduling for the parallel solution of linear systems. Parallel Computing, 2006, 32(2): 136–156
CrossRef Google scholar
[49]
Svanberg K. The method of moving asymptote—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373
CrossRef Google scholar
[50]
Sharma A, Villanueva H, Maute K. On shape sensitivities with Heaviside-enriched XFEM. Structural and Multidisciplinary Optimization, 2017, 55(2): 385–408
CrossRef Google scholar
[51]
Geiss M J, Maute K. Topology optimization of active structures using a higher-order level-set-XFEM-density approach. In: Proceedings of 2018 Multidisciplinary Analysis and Optimization Conference, AIAA AVIATION Forum, (AIAA 2018-4053). Atlanta, 2018
CrossRef Google scholar
[52]
Villanueva C H, Maute K. Density and level set-XFEM schemes for topology optimization of 3-D structures. Computational Mechanics, 2014, 54(1): 133–150
CrossRef Google scholar
[53]
Geiss M J, Bodeti N, Weeger O, Combined level-set-XFEM-density topology optimization of 4D printed structures undergoing large deformation. Journal of Mechanical Design, 2018 (in press)
CrossRef Google scholar
[54]
Sharma A, Maute K. Stress-based topology optimization using spatial gradient stabilized XFEM. Structural and Multidisciplinary Optimization, 2018, 57(1): 17–38
CrossRef Google scholar
[55]
Guo X, Zhang W, Zhong W. Explicit feature control in structural topology optimization via level set method. Computer Methods in Applied Mechanics and Engineering, 2014, 272: 354–378
CrossRef Google scholar
[56]
Kreissl S, Pingen G, Maute K. Topology optimization for unsteady flow. International Journal for Numerical Methods in Engineering, 2011, 87(13): 1229–1253
[57]
Makhija D, Maute K. Level set topology optimization of scalar transport problems. Structural and Multidisciplinary Optimization, 2015, 51(2): 267–285
CrossRef Google scholar
[58]
Borrvall T, Petersson J. Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids, 2003, 41(1): 77–107
CrossRef Google scholar
[59]
Dunning P D, Alicia Kim H. A new hole insertion method for level set based structural topology optimization. International Journal for Numerical Methods in Engineering, 2013, 93(1): 118–134
CrossRef Google scholar

Acknowledgements

The first, second and fourth authors acknowledge the support of the United States National Science Foundation (CMMI-1463287). The third author acknowledge the support of the SUTD Digital Manufacturing and Design (DManD) Centre supported by the National Research Foundation of Singapore. The fourth author acknowledges the support of the Air Force Office of Scientific Research (Grant No. FA9550-16-1-0169) and from the Defense Advanced Research Projects Agency (DARPA) under the TRADES program (agreement HR0011-17-2-0022). The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organizations.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2019 The Author(s) 2019. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(4484 KB)

Accesses

Citations

Detail

Sections
Recommended

/