Determining casting defects in near-net shape casting aluminum parts by computed tomography

Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER

PDF(339 KB)
PDF(339 KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 48-52. DOI: 10.1007/s11465-018-0493-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Determining casting defects in near-net shape casting aluminum parts by computed tomography

Author information +
History +

Abstract

Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

Keywords

near-net shape casting / aluminum parts / casting defects / low pressure die casting / die casting / semi-solid casting / computed tomography

Cite this article

Download citation ▾
Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER. Determining casting defects in near-net shape casting aluminum parts by computed tomography. Front. Mech. Eng., 2018, 13(1): 48‒52 https://doi.org/10.1007/s11465-018-0493-y

References

[1]
Guo S J, Xu  Y, Han Y, Near net shape casting process for producing high strength 6xxx aluminum alloy automobile suspension parts. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2393–2400 
CrossRef Google scholar
[2]
Kamat G R. Low pressure counter gravity casting of aluminium alloys. Transactions of the Indian Institute of Metals (India), 1992, 45(3): 177–180
[3]
Chandley G D. Counter gravity casting of aluminum in investment and sand molds. American Foundrymen’s Society, 1986, 94: 209–214
[4]
Jie W Q, Li  X L, Hao  Q T. Counter-gravity casting equipment and technologies for thin-walled al-alloy parts in resin sand molds. Materials Science Forum, 2009, 618-619: 585–589
CrossRef Google scholar
[5]
Chandley G D. Use of vacuum for counter-gravity casting of metals. Materials Research Innovations, 1999, 3(1): 14–23
CrossRef Google scholar
[6]
Rosc J, Pabel  T, Geier G F, Method for the estimation of porosity analysis of CT-data. Giesserei-rundschau, 2010, 57: 244–246
[7]
Mayo S C, Stevenson  A W, Wilkins  S W. In-line phase-contrast X-ray imaging and tomography for materials science. Materials (Basel), 2012, 5(12): 937–965
CrossRef Google scholar
[8]
Withers P J. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy. Philosophical Transactions of the Royal Society A, 2015, 373(2036): 20130157
CrossRef Google scholar
[9]
Samavedam S, Sakri  S B, Hanumantha Rao  D, Estimation of porosity and shrinkage in a cast eutectic Al-Si alloy. Canadian Metallurgical Quarterly, 2014, 53(1): 55–64
CrossRef Google scholar
[10]
Nicoletto G, Konečná  R, Fintova S. Characterization of microshrinkage casting defects of Al-Si alloys by X-ray computed tomography and metallography. International Journal of Fatigue, 2012, 41: 39–46
CrossRef Google scholar
[11]
Cabeza S, Mishurova  T, Garcés G, Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two-ceramic reinforcements. Journal of Materials Science, 2017, 52(17): 10198–10216
CrossRef Google scholar

Acknowledgements

Jiehua Li acknowledges the financial support provided by the Major International (Regional) Joint Research Project (Grant No. 51420105005) and Overseas, Hong Kong, Macao Scholars Cooperative Research Fund (Grant No. 51728101) from China.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/