Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI

PDF(452 KB)
PDF(452 KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 74-84. DOI: 10.1007/s11465-018-0490-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Three-dimensional numerical simulation for plastic injection-compression molding

Author information +
History +

Abstract

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

Keywords

injection-compression molding / simulation / injection molding / melt flow / cavity pressure

Cite this article

Download citation ▾
Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI. Three-dimensional numerical simulation for plastic injection-compression molding. Front. Mech. Eng., 2018, 13(1): 74‒84 https://doi.org/10.1007/s11465-018-0490-1

References

[1]
Kuo H C, Jeng  M C. The influence of injection molding and injection compression molding on ultra-high molecular weight polyethylene polymer microfabrication. International Polymer Processing, 2011, 26(5): 508–516
CrossRef Google scholar
[2]
Huang M S, Chung  C F. Injection molding and injection compression molding of thin-walled light-guided plates with V-grooved microfeatures. Journal of Applied Polymer Science, 2011, 121(2): 1151–1159
CrossRef Google scholar
[3]
Guan W S, Huang  H X. Back melt flow in injection-compression molding: Effect on part thickness distribution. International Communications in Heat and Mass Transfer, 2012, 39(6): 792–797
CrossRef Google scholar
[4]
Young W B. On the residual stress and shrinkage in injection compression molding. International Polymer Processing, 2003, 18(3): 313–320
CrossRef Google scholar
[5]
Huang H, Li  K, Li S. Injection-compression molded part shrinkage uniformity comparison between semicrystalline and amorphous plastics. Polymer-Plastics Technology and Engineering, 2008, 48(1): 64–68 
CrossRef Google scholar
[6]
Lee H S, Yoo  Y G. Effects of processing conditions on cavity pressure during injection-compression molding. International Journal of Precision Engineering and Manufacturing, 2012, 13(12): 2155–2161
CrossRef Google scholar
[7]
Silva C A, Viana  J C, van Hattum  F W J, Fiber orientation in divergent/convergent flows in expansion and compression injection molding. Polymer Composites, 2006, 27(5): 539–551
CrossRef Google scholar
[8]
Kim N H, Isayev  A I. Birefringence in injection-compression molding of amorphous polymers: Simulation and experiment. Polymer Engineering and Science, 2013, 53(8): 1786–1808
CrossRef Google scholar
[9]
Wang C, Wang  P. Analysis of optical properties in injection-molded and compression-molded optical lenses. Applied Optics, 2014, 53(11): 2523–2531
CrossRef Google scholar
[10]
Xie M, Chen  J, Li H. Morphology and mechanical properties of injection-molded ultrahigh molecular weight polyethylene/polypropylene blends and comparison with compression molding. Journal of Applied Polymer Science, 2009, 111(2): 890–898
[11]
Chen S, Chen  Y, Peng H. Simulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage. Journal of Applied Polymer Science, 2000, 75(13): 1640–1654
CrossRef Google scholar
[12]
Ho J Y, Park  J M, Kang  T G, Three-dimensional numerical analysis of injection-compression molding process. Polymer Engineering and Science, 2012, 52(4): 901–911
CrossRef Google scholar
[13]
Li Y, Zhang  Y, Li D. Shrinkage analysis of injection-compression molding for transparent plastic panel by 3D simulation. Applied Mechanics and Materials, 2011, 44–47: 1029–1033
[14]
Cao W, Min  Z Y, Zhang  S X, Numerical simulation for flow-induced stress in injection/compression molding. Polymer Engineering and Science, 2016, 56(3): 287–298
CrossRef Google scholar
[15]
Cao W, Hua  S Z, Zhang  S X, Three-dimensional viscoelastic simulation for injection/compression molding based on arbitrary Lagrangian Eulerian description. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051004
CrossRef Google scholar
[16]
Tryggvason G, Bunner  B, Esmaeeli A, A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 2001, 169(2): 708–759
CrossRef Google scholar
[17]
Gueyffier D, Li  J, Nadim A, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 1999, 152(2): 423–456
CrossRef Google scholar
[18]
Young W B. Filling and postfilling analysis of injection/compression molding. International Polymer Processing, 2000, 15(4): 416–422
CrossRef Google scholar
[19]
Araújo B J,  Teixeira J C F,  Cunha A M, Parallel three-dimensional simulation of the injection molding process. International Journal for Numerical Methods in Fluids, 2009, 59(7): 801–815
CrossRef Google scholar
[20]
Muzaferija S, Gosman  D. Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. Journal of Computational Physics, 1997, 138(2): 766–787
CrossRef Google scholar
[21]
Ubbink O, Issa  R. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics, 1999, 153(1): 26–50
CrossRef Google scholar
[22]
Patankar S. Numerical Heat Transfer and Fluid Flow. Columbus: McGraw Hill, 1980, 126–130
[23]
Agassant J F, Mackley  M R. A personal perspective on the use of modelling simulation for polymer melt processing. International Polymer Processing, 2015, 30(1): 121–140
CrossRef Google scholar

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation Council of China (Grant Nos. 51635006 and 51675199), the Fundamental Research Funds for the Central Universities (Grant Nos. 2016YXZD059 and 2015ZDTD028), and the Beijing Engineering Research Center of Advanced Structural Transparencies for the Modern Traffic System.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(452 KB)

Accesses

Citations

Detail

Sections
Recommended

/