Three-dimensional numerical simulation for plastic injection-compression molding

Yun ZHANG , Wenjie YU , Junjie LIANG , Jianlin LANG , Dequn LI

Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 74 -84.

PDF (452KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 74 -84. DOI: 10.1007/s11465-018-0490-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Three-dimensional numerical simulation for plastic injection-compression molding

Author information +
History +
PDF (452KB)

Abstract

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

Keywords

injection-compression molding / simulation / injection molding / melt flow / cavity pressure

Cite this article

Download citation ▾
Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI. Three-dimensional numerical simulation for plastic injection-compression molding. Front. Mech. Eng., 2018, 13(1): 74-84 DOI:10.1007/s11465-018-0490-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kuo H CJeng  M C. The influence of injection molding and injection compression molding on ultra-high molecular weight polyethylene polymer microfabrication. International Polymer Processing201126(5): 508–516

[2]

Huang M SChung  C F. Injection molding and injection compression molding of thin-walled light-guided plates with V-grooved microfeatures. Journal of Applied Polymer Science2011121(2): 1151–1159

[3]

Guan W SHuang  H X. Back melt flow in injection-compression molding: Effect on part thickness distribution. International Communications in Heat and Mass Transfer201239(6): 792–797

[4]

Young W B. On the residual stress and shrinkage in injection compression molding. International Polymer Processing200318(3): 313–320

[5]

Huang HLi  KLi S. Injection-compression molded part shrinkage uniformity comparison between semicrystalline and amorphous plastics. Polymer-Plastics Technology and Engineering200848(1): 64–68 

[6]

Lee H SYoo  Y G. Effects of processing conditions on cavity pressure during injection-compression molding. International Journal of Precision Engineering and Manufacturing201213(12): 2155–2161

[7]

Silva C AViana  J Cvan Hattum  F W JFiber orientation in divergent/convergent flows in expansion and compression injection molding. Polymer Composites200627(5): 539–551

[8]

Kim N HIsayev  A I. Birefringence in injection-compression molding of amorphous polymers: Simulation and experiment. Polymer Engineering and Science201353(8): 1786–1808

[9]

Wang CWang  P. Analysis of optical properties in injection-molded and compression-molded optical lenses. Applied Optics201453(11): 2523–2531

[10]

Xie MChen  JLi H. Morphology and mechanical properties of injection-molded ultrahigh molecular weight polyethylene/polypropylene blends and comparison with compression molding. Journal of Applied Polymer Science2009111(2): 890–898

[11]

Chen SChen  YPeng H. Simulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage. Journal of Applied Polymer Science200075(13): 1640–1654

[12]

Ho J YPark  J MKang  T GThree-dimensional numerical analysis of injection-compression molding process. Polymer Engineering and Science201252(4): 901–911

[13]

Li YZhang  YLi D. Shrinkage analysis of injection-compression molding for transparent plastic panel by 3D simulation. Applied Mechanics and Materials201144–47: 1029–1033

[14]

Cao WMin  Z YZhang  S XNumerical simulation for flow-induced stress in injection/compression molding. Polymer Engineering and Science201656(3): 287–298

[15]

Cao WHua  S ZZhang  S XThree-dimensional viscoelastic simulation for injection/compression molding based on arbitrary Lagrangian Eulerian description. Journal of Computational and Nonlinear Dynamics201611(5): 051004

[16]

Tryggvason GBunner  BEsmaeeli AA front-tracking method for the computations of multiphase flow. Journal of Computational Physics2001169(2): 708–759

[17]

Gueyffier DLi  JNadim AVolume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics1999152(2): 423–456

[18]

Young W B. Filling and postfilling analysis of injection/compression molding. International Polymer Processing200015(4): 416–422

[19]

Araújo B J Teixeira J C F Cunha A MParallel three-dimensional simulation of the injection molding process. International Journal for Numerical Methods in Fluids200959(7): 801–815

[20]

Muzaferija SGosman  D. Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. Journal of Computational Physics1997138(2): 766–787

[21]

Ubbink OIssa  R. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics1999153(1): 26–50

[22]

Patankar S. Numerical Heat Transfer and Fluid Flow. Columbus: McGraw Hill1980, 126–130

[23]

Agassant J FMackley  M R. A personal perspective on the use of modelling simulation for polymer melt processing. International Polymer Processing201530(1): 121–140

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (452KB)

3204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/