Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review
Y. LUO, S. C. WU, Y. N. HU, Y. N. FU
Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review
Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.
fatigue crack initiation and growth / fatigue damage mechanism / damage tolerance / defect characterization / laser welded aluminum alloys
[1] |
Schijve J. Fatigue of Structures and Materials. New York: Springer, 2001
|
[2] |
Wu S C, Zhang S Q, Xu Z W,
CrossRef
Google scholar
|
[3] |
Thompson A, Maskery I, Leach R K. X-ray computed tomography for additive manufacturing: A review. Measurement Science & Technology, 2016, 27(7): 072001
CrossRef
Google scholar
|
[4] |
Withers P J, Preuss M. Fatigue and damage in structural materials studied by X-ray tomography. Annual Review of Materials Research, 2012, 42(1): 81–103
CrossRef
Google scholar
|
[5] |
Buffière J Y, Ferrie E, Proudhon H,
CrossRef
Google scholar
|
[6] |
Bathias C, Pineau A. Fatigue of Materials and Structures. New York: Wiley, 2010
|
[7] |
Buffière J Y, Maire E, Adrien J,
CrossRef
Google scholar
|
[8] |
Wang S G, Wang S C, Zhang L. The application of high resolution X-ray tomography in materials science. Acta Metallurgica Sinica, 2013, 49(8): 897–910
CrossRef
Google scholar
|
[9] |
Wu S C, Xiao T Q, Withers P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography. Engineering Fracture Mechanics, 2017, 182: 127–156
CrossRef
Google scholar
|
[10] |
Wang R Z, Zhang X C, Tu S T,
CrossRef
Google scholar
|
[11] |
Toda H, Masuda S, Batres R,
CrossRef
Google scholar
|
[12] |
Wu S C, Yu C, Zhang W H,
CrossRef
Google scholar
|
[13] |
Bale H A, Haboub A, MacDowell A A,
CrossRef
Google scholar
|
[14] |
Rack A, Assoufid L, Dietsch R,
CrossRef
Google scholar
|
[15] |
Ikenaga E, Kobata M, Matsuda H,
CrossRef
Google scholar
|
[16] |
Xie H L, Deng B, Du G H,
|
[17] |
MacDowell A A, Parkinson D Y, Haboub A,
CrossRef
Google scholar
|
[18] |
Maire E, Withers P J. Quantitative X-ray tomography. International Materials Reviews, 2014, 59(1): 1–43
CrossRef
Google scholar
|
[19] |
Gupta C, Toda H, Fujioka T,
CrossRef
Google scholar
|
[20] |
Hannard F, Pardoen T, Maire E,
CrossRef
Google scholar
|
[21] |
Gibson L J. Mechanical Behavior of Metallic Foams. Annual Review of Materials Science, 2000, 30(1): 191–227
CrossRef
Google scholar
|
[22] |
Hangai Y, Takahashi K, Yamaguchi R,
CrossRef
Google scholar
|
[23] |
Wu S C, Yu C, Yu P S,
CrossRef
Google scholar
|
[24] |
Teranishi M, Kuwazuru O, Gennai S,
CrossRef
Google scholar
|
[25] |
Green N R, Campbell J. Statistical distributions of fracture strengths of cast Al-7Si-Mg alloy. Materials Science and Engineering A, 1993, 173(1–2): 261–266
CrossRef
Google scholar
|
[26] |
Buffière J Y, Savelli S, Jouneau P H,
CrossRef
Google scholar
|
[27] |
Serrano-Munoz I, Buffière J Y, Verdu C,
CrossRef
Google scholar
|
[28] |
Nizery E, Proudhon H, Buffière J Y,
CrossRef
Google scholar
|
[29] |
Ludwig W, Buffière J Y, Savelli S,
CrossRef
Google scholar
|
[30] |
Qian L, Toda H, Uesugi K,
CrossRef
Google scholar
|
[31] |
Szmytka F, Oudin A. A reliability analysis method in thermomechanical fatigue design. International Journal of Fatigue, 2013, 53: 82–91
CrossRef
Google scholar
|
[32] |
Dezecot S, Buffière J Y, Koster A,
CrossRef
Google scholar
|
[33] |
de Pannemaecker A, Fouvry S, Brochu M,
CrossRef
Google scholar
|
[34] |
Ferrié E, Buffière J Y, Ludwig W,
CrossRef
Google scholar
|
[35] |
Zhang H, Toda H, Qu P,
CrossRef
Google scholar
|
[36] |
Toda H, Yamamoto S, Kobayashi M,
CrossRef
Google scholar
|
[37] |
Cheng H, Yang F, Wei Z. Potential failure modes and accelerating test strategy of burner. SAE International, 2012, 23: 16–21
|
[38] |
Williams J J, Yazzie K E, Padilla E,
CrossRef
Google scholar
|
[39] |
Wang Q G, Apelian D, Lados D A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. Journal of Light Metals, 2001, 1(1): 73–84
CrossRef
Google scholar
|
[40] |
Dahdah N, Limodin N, El Bartali A,
CrossRef
Google scholar
|
[41] |
Dezecot S, Buffiere J Y, Koster A,
|
[42] |
Nizery E, Proudhon H J, Buffiere J Y,
CrossRef
Google scholar
|
[43] |
Singh S S, Williams J J, Hruby P,
CrossRef
Google scholar
|
[44] |
Zhu G G. The application of aluminum alloy materials in automotive lightening. Light Metals, 2011, 8(10): 3–6
|
[45] |
Velhinho A, Sequeira P D, Martins R,
CrossRef
Google scholar
|
[46] |
Lloyd D J. Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews, 1994, 39(1): 1–23
CrossRef
Google scholar
|
[47] |
Deng X, Chawla N. Modeling the effect of particle clustering on the mechanical behavior of SiC particle reinforced Al matrix composites. Journal of Materials Science, 2006, 41(17): 5731–5734
CrossRef
Google scholar
|
[48] |
Segurado J, Gonzalez C A, Llorca J. A numerical investigation of the effect of particle clustering on the mechanical properties of composites. Acta Materialia, 2003, 51(8): 2355–2369
CrossRef
Google scholar
|
[49] |
Kumar A, Lal S, Kumar S. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method. Journal of Materials Research and Technology, 2013, 2(3): 250–254
CrossRef
Google scholar
|
[50] |
De Giovanni M, Warnett J M, Williams M A,
CrossRef
Google scholar
|
[51] |
Watson I G, Forster M F, Lee P D,
CrossRef
Google scholar
|
[52] |
Hirano T, Usami K, Tanaka Y,
CrossRef
Google scholar
|
[53] |
Ferre A, Dancette S, Maire E. Damage characterisation in aluminum matrix composites reinforced with amorphous metal inclusions. Materials Science and Technology, 2015, 31(5): 579–586
CrossRef
Google scholar
|
[54] |
Chen F, Mao F, Chen Z N,
CrossRef
Google scholar
|
[55] |
Chawla N, Williams J J, Saha R. Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites. Journal of Light Metals, 2002, 2(4): 215–227
CrossRef
Google scholar
|
[56] |
de Andrade Silva F, Williams J J, Müller B R,
CrossRef
Google scholar
|
[57] |
Chawla N, Sidhu R S. Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys. Journal of Materials Science Materials in Electronics, 2007, 18(1): 175–189
|
[58] |
Dudek M A, Chawla N. Oxidation behavior of rare-earth-containing Pb-free solders. Journal of Electronic Materials, 2009, 38(2): 210–220
CrossRef
Google scholar
|
[59] |
Hruby P, Singh S S, Williams J J,
CrossRef
Google scholar
|
[60] |
Williams J J, Flom Z, Amell A A,
CrossRef
Google scholar
|
[61] |
Vaidya U K, Chawla K K. Processing of fibre reinforced thermoplastic composites. International Materials Reviews, 2008, 53(4): 185–218
CrossRef
Google scholar
|
[62] |
Chawla K K. Thermal cycling of copper matrix-tungsten fiber composites: A metallographic study. Metallography, 1973, 6(2): 155–169
CrossRef
Google scholar
|
[63] |
Chapman N C, Silva J, Williams J J,
CrossRef
Google scholar
|
[64] |
Wu S C, Hu Y N, Duan H,
CrossRef
Google scholar
|
[65] |
Wu S C, Yu X, Zuo R Z,
|
[66] |
Duan H, Wu S C, Xu Z W,
CrossRef
Google scholar
|
[67] |
Wu S C, Hu Y N, Fu Y N,
|
[68] |
Hu Y N, Wu S C, Zhang S Q,
CrossRef
Google scholar
|
[69] |
Zhang B, Chen W, Poirier D R. Effect of solidification cooling rate on the fatigue life of A356.2-T6 cast aluminium alloy. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(5): 417–423
CrossRef
Google scholar
|
/
〈 | 〉 |