Novel technologies for the lost foam casting process

Wenming JIANG , Zitian FAN

Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 37 -47.

PDF (916KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 37 -47. DOI: 10.1007/s11465-018-0473-2
REVIEW ARTICLE
REVIEW ARTICLE

Novel technologies for the lost foam casting process

Author information +
History +
PDF (916KB)

Abstract

Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting techno- logy; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thin-wall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

Keywords

LFC under vacuum and low pressure / vibration solidification / pressure solidification / expendable shell casting / bimetallic castings

Cite this article

Download citation ▾
Wenming JIANG, Zitian FAN. Novel technologies for the lost foam casting process. Front. Mech. Eng., 2018, 13(1): 37-47 DOI:10.1007/s11465-018-0473-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang NYe  SFan Z. Principle and Control of Lost Foam Casting. Wuhan: Huazhong University of Science and Technology Press, 2004

[2]

Huang THuang  NLv Z. Lost Foam Casting Technology. Beijing: Mechanical Industry Press, 2004

[3]

Charchi ARezaei  MHossainpour SNumerical simulation of heat transfer and fluid flow of molten metal in MMA–St copolymer lost foam casting process. Journal of Materials Processing Technology2010210(14): 2071–2080 doi:10.1016/j.jmatprotec.2010.07.028

[4]

Liu ZHu  JWang QEvaluation of the effect of vacuum on mold filling in the magnesium EPC process. Journal of Materials Processing Technology2002120(1–3): 94–100

[5]

Geffroy PLakehal  MGoñi JThermal and mechanical behaviour of grey cast iron and ductile iron castings using magnetic molding and lost foam processes. Journal of Materials Processing Technology2009209(8): 4103–4111

[6]

Shayegh JHossainpour  SRezaei MDeveloping a new 2D model for heat transfer and foam degradation in EPS lost foam casting (LFC) process. International Communications in Heat and Mass Transfer201037(9): 1396–1402

[7]

Liu XBhavnani  S HOverfelt  R A. Simulation of EPS foam decomposition in the lost foam casting process. Journal of Materials Processing Technology2007182(1–3): 333–342

[8]

Sands MShivkumar  S. EPS bead fusion effects on fold defect formation in lost foam casting of aluminum alloys. Journal of Materials Science200641(8): 2373–2379

[9]

Shin S RLee  Z HCho  G SHydrogen gas pick-up mechanism of Al-alloy melt during lost foam casting. Journal of Materials Science200439(5): 1563–1569

[10]

Fan ZJiang  WLiu F. Status quo and development trend of lost foam casting technology. China Foundry201411(4): 296–307

[11]

Fan ZDong  XHuang NChina Patent, ZL02115638.7, 2002-12-04 (in Chinese)

[12]

Fan ZJi  S. Low pressure lost foam process for casting magnesium alloys. Materials Science and Technology200521(6): 727–734

[13]

Li JZhao  ZFan Z. Study on typical hole defects in AZ91D magnesium alloy prepared by low pressure lost foam casting. China Foundry201310(4): 232–236

[14]

Zhao Z. Study on microstructures and mechanical properties of aluminum (magnesium) alloy under vibration and pressure in lost foam casting process. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology2010

[15]

Zhao ZFan  ZJiang WMicrostructural evolution of Mg9AlZnY alloy with vibration in lost foam casting during semi-solid isothermal heat treatment. Transactions of Nonferrous Metals Society of China201020(Suppl3): s768–s773 

[16]

Zhao ZFan  ZDong X. Influence of mechanical vibration on the solidification of a lost foam cast 356 alloy. China Foundry20107(1): 24–29

[17]

Fan ZLi  JTian XChina Patent, CN200710168429.1, 2008-05-21

[18]

Jiang WChen  XWang B, et al. Effects of vibration frequency on microstructure, mechanical properties and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting. International Journal of Advanced Manufacturing Technology201683(1–4): 167–175 

[19]

Xiao B. Characteristics of microstructure and properties of cast iron produced by lost foam casting with vibration. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology2013 

[20]

Xiao BFan  ZJiang WMicrostructure and mechanical properties of ductile cast iron in lost foam casting with vibration. Journal of Iron and Steel Research International201421(11): 1049–1054 

[21]

Zou WZhang  ZYang HEffect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting. China Foundry201613(4): 248–255

[22]

Fan ZZhao  ZTang BChina Patent, CN200810197390.0, 2009-03-25

[23]

Zhao ZFan  ZTang BInfluence of pressure solidification on AZ91D magnesium alloy feeding in lost foam casting process. International Journal of Cast Metals Research201124(1): 13–21 

[24]

Jiang WFan  ZLiu DEffects of process parameters on internal quality of castings during novel casting. Materials and Manufacturing Processes201228(1): 48–55 

[25]

Ridder S DKou  SMehrabian R. Effect of fluid flow on macrosegregation in axi-symmetric ingots. Metallurgical Transactions B198112(3): 435–447

[26]

Ashton M CSharman  S GBrookes  A J. The replicast CS (ceramic shell) process.  Materials & Design19845(2): 66–75 

[27]

Jiang WFan  ZLiao DA new shell casting process based on expendable pattern with vacuum and low-pressure casting for aluminum and magnesium alloys. International Journal of Advanced Manufacturing Technology201051(1–4): 25–34

[28]

Jiang WFan  ZChen XCombined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting. Materials Science and Engineering A2014619(12): 228–237

[29]

Liao DFan  ZJiang WStudy on the surface roughness of ceramic shells and castings in the ceramic shell casting process based on expandable pattern. Journal of Materials Processing Technology2011211(9): 1465–1470

[30]

Jiang WFan  ZLiu DInfluence of process parameters on filling ability of A356 aluminium alloy in expendable pattern shell casting with vacuum and low pressure. International Journal of Cast Metals Research201225(1): 47–52

[31]

Jiang WFan  ZLiu DInfluence of gas flowrate on filling ability and internal quality of A356 aluminum alloy castings fabricated using the expendable pattern shell casting with vacuum and low pressure. International Journal of Advanced Manufacturing Technology201367(9–12): 2459–2468

[32]

Jiang WFan  ZLiao DInvestigation of microstructures and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting process with vacuum and low pressure. Materials & Design201132(2): 926–934

[33]

Emami S MDivandari  MHajjari EComparison between conventional and lost foam compound casting of Al/Mg light metals. International Journal of Cast Metals Research201326(1): 43–50

[34]

Guler K AKisasoz  AKaraaslan A. Investigation of lost foam casted aluminum bimetal microstructures. Materials Testing201456(9): 737–740

[35]

Guler K AKisasoz  AKaraaslan A. Fabrication of Al/Mg bimetal compound casting by lost foam technique and liquid-solid process. Materials Testing201456(9): 700–702

[36]

Divandari MVahid Golpayegani  A R. Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process. Materials & Design200930(8): 3279–3285

[37]

Mehdi Hejazi M Divandari M Taghaddos E. Effect of copper insert on the microstructure of gray iron produced via lost foam casting. Materials & Design200930(4): 1085–1092 

[38]

Choe K HPark  K SKang  B H. Study of the interface between steel insert and aluminum casting in EFC. Journal of Materials Science and Technology200824(1): 60–64

[39]

Xiao XYe  SYin WHCWCI/carbon steel bimetal liner by liquid-liquid compound lost foam casting. Journal of Iron and Steel Research International201219(10): 13–19

[40]

Xiao XYe  SYin W. High Cr white cast iron/carbon steel bimetal liner by lost foam casting with liquid-liquid composite process. China Foundry20129(2): 136–142

[41]

Jiang WLi  GFan ZInvestigation on the interface characteristics of Al/Mg bimetallic castings processed by lost foam casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science201647(5): 2462–2470 

[42]

Jiang WFan  ZLi GEffects of melt-to-solid insert volume ratio on the microstructures and mechanical properties of Al/Mg bimetallic castings produced by lost foam casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science201647(12): 6487–6497

[43]

Li GJiang  WFan ZEffects of pouring temperature on microstructure, mechanical properties, and fracture behavior of Al/Mg bimetallic composites produced by lost foam casting process. International Journal of Advanced Manufacturing Technology201791(1–4): 1355–1368

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (916KB)

3761

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/