Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

Shota SANDO , Bo ZHANG , Tianhong CUI

Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (4) : 574 -580.

PDF (297KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (4) : 574 -580. DOI: 10.1007/s11465-017-0485-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

Author information +
History +
PDF (297KB)

Abstract

Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

Keywords

graphene / self-assembly / shrink polymer / AFP / label-free / biosensor

Cite this article

Download citation ▾
Shota SANDO, Bo ZHANG, Tianhong CUI. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay. Front. Mech. Eng., 2017, 12(4): 574-580 DOI:10.1007/s11465-017-0485-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schwierz F. Graphene transistors. Nature Nanotechnology20105(7): 487–496

[2]

Chen DTang LLi J. Graphene-based materials in electrochemistry. Chemical Society Reviews201039(8): 3157–3180

[3]

Yang WRatinac K RRinger S PCarbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angewandte Chemie International Edition201049(12): 2114–2138

[4]

Novoselov K SGeim A KMorozov S VElectric field effect in atomically thin carbon films. Science2004306(5696): 666–669

[5]

Blake PHill E WCastro Neto A HMaking graphene visible. Applied Physics Letters200791(6): 063124

[6]

Li XCai WAn JLarge-area synthesis of high-quality and uniform graphene films on copper foils. Science2009324(5932): 1312–1314

[7]

Mattevi CKim HChhowalla M. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry201121(10): 3324–3334

[8]

Yu QJauregui L AWu WControl and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials201110(6): 443–449

[9]

Sutter P. Epitaxial graphene: How silicon leaves the scene. Nature Materials20098(3): 171–172

[10]

Kosynkin D VHigginbotham A LSinitskii ALongitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature2009458(7240): 872–876

[11]

Biswas ABayer I SBiris A SAdvances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science2012170(1–2): 2–27

[12]

Wei WSong YWang LAn implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo. Microsystems & Nanoengineering20151: 15002

[13]

Sando SZhang BCui T A. Low-cost and label-free alpha-fetoprotein sensor based on self-assembled graphene on shrink polymer. In: Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril: IEEE2015, 324–327

[14]

Fu CGrimes ALong MTunable nanowrinkles on shape memory polymer sheets. Advanced Materials200921(44): 4472–4476

[15]

Sohn I YKim D JJung J HpH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosensors & Bioelectronics201345: 70–76

[16]

Anan HKamahori MIshige YRedox-potential sensor array based on extended-gate field-effect transistors with w-ferrocenylalkanethiol-modified gold electrodes. Sensors and Actuators B, Chemical2013187: 254–261

[17]

Patolsky FZheng GLieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols20061(4): 1711–1724

[18]

Chen XJia XHan JElectrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics201350: 356–361

[19]

Li XZhao CLiu X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsystems & Nanoengineering20151: 15014

[20]

Hideshima SSato RInoue SDetection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors and Actuators B, Chemical2012161(1): 146–150

[21]

Cole D JAng P KLoh K P. Ion adsorption at the graphene/electrolyte interface. Journal of Physical Chemistry Letters20112(14): 1799–1803

[22]

Nagashio KToriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Japanese Journal of Applied Physics201150(7R): 070108

[23]

van Hal R E GEijkel J C TBergveld P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors and Actuators B, Chemical199524(1–3): 201–205

[24]

Israelachvili J N. Intermolecular and Surface Forces. 3rd ed. Amsterdam: Elsevier2011

[25]

Vacic ACriscione J MRajan N KDetermination of molecular configuration by Debye length modulation. Journal of the American Chemical Society2011133(35): 13886–13889

[26]

Park C WAh C SAhn C G, Analysis of configuration of surface-immobilized proteins by Si nanochannel field effect transistor biosensor. Procedia Chemistry20091(1): 674–677

[27]

Kim AAh C SPark C WDirect label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosensors & Bioelectronics201025(7): 1767–1773

[28]

Stern EWagner RSigworth F JImportance of the Debye screening length on nanowire field effect transistor sensors. Nano Letters20077(11): 3405–3409

RIGHTS & PERMISSIONS

The Author(s) 2017. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (297KB)

3369

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/