Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

Shota SANDO, Bo ZHANG, Tianhong CUI

PDF(297 KB)
PDF(297 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (4) : 574-580. DOI: 10.1007/s11465-017-0485-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

Author information +
History +

Abstract

Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

Keywords

graphene / self-assembly / shrink polymer / AFP / label-free / biosensor

Cite this article

Download citation ▾
Shota SANDO, Bo ZHANG, Tianhong CUI. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay. Front. Mech. Eng., 2017, 12(4): 574‒580 https://doi.org/10.1007/s11465-017-0485-3

References

[1]
Schwierz F. Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487–496
CrossRef Google scholar
[2]
Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010, 39(8): 3157–3180
CrossRef Google scholar
[3]
Yang W, Ratinac K R, Ringer S P, Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angewandte Chemie International Edition, 2010, 49(12): 2114–2138
CrossRef Google scholar
[4]
Novoselov K S, Geim A K, Morozov S V, Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
CrossRef Google scholar
[5]
Blake P, Hill E W, Castro Neto A H, Making graphene visible. Applied Physics Letters, 2007, 91(6): 063124
CrossRef Google scholar
[6]
Li X, Cai W, An J, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
CrossRef Google scholar
[7]
Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011, 21(10): 3324–3334
CrossRef Google scholar
[8]
Yu Q, Jauregui L A, Wu W, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 443–449
CrossRef Google scholar
[9]
Sutter P. Epitaxial graphene: How silicon leaves the scene. Nature Materials, 2009, 8(3): 171–172
CrossRef Google scholar
[10]
Kosynkin D V, Higginbotham A L, Sinitskii A, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876
CrossRef Google scholar
[11]
Biswas A, Bayer I S, Biris A S, Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science, 2012, 170(1–2): 2–27
CrossRef Google scholar
[12]
Wei W, Song Y, Wang L, An implantable microelectrode array for simultaneous L-glutamate and electrophysiological recordings in vivo. Microsystems & Nanoengineering, 2015, 1: 15002
CrossRef Google scholar
[13]
Sando S, Zhang B, Cui T A. Low-cost and label-free alpha-fetoprotein sensor based on self-assembled graphene on shrink polymer. In: Proceedings of 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Estoril: IEEE, 2015, 324–327
CrossRef Google scholar
[14]
Fu C, Grimes A, Long M, Tunable nanowrinkles on shape memory polymer sheets. Advanced Materials, 2009, 21(44): 4472–4476
CrossRef Google scholar
[15]
Sohn I Y, Kim D J, Jung J H, pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosensors & Bioelectronics, 2013, 45: 70–76
CrossRef Google scholar
[16]
Anan H, Kamahori M, Ishige Y, Redox-potential sensor array based on extended-gate field-effect transistors with w-ferrocenylalkanethiol-modified gold electrodes. Sensors and Actuators B, Chemical, 2013, 187: 254–261
CrossRef Google scholar
[17]
Patolsky F, Zheng G, Lieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols, 2006, 1(4): 1711–1724
CrossRef Google scholar
[18]
Chen X, Jia X, Han J, Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics, 2013, 50: 356–361
CrossRef Google scholar
[19]
Li X, Zhao C, Liu X. A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsystems & Nanoengineering, 2015, 1: 15014
CrossRef Google scholar
[20]
Hideshima S, Sato R, Inoue S, Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors and Actuators B, Chemical, 2012, 161(1): 146–150
CrossRef Google scholar
[21]
Cole D J, Ang P K, Loh K P. Ion adsorption at the graphene/electrolyte interface. Journal of Physical Chemistry Letters, 2011, 2(14): 1799–1803
CrossRef Google scholar
[22]
Nagashio K, Toriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Japanese Journal of Applied Physics, 2011, 50(7R): 070108
CrossRef Google scholar
[23]
van Hal R E G, Eijkel J C T, Bergveld P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sensors and Actuators B, Chemical, 1995, 24(1–3): 201–205
CrossRef Google scholar
[24]
Israelachvili J N. Intermolecular and Surface Forces. 3rd ed. Amsterdam: Elsevier, 2011
[25]
Vacic A, Criscione J M, Rajan N K, Determination of molecular configuration by Debye length modulation. Journal of the American Chemical Society, 2011, 133(35): 13886–13889
CrossRef Google scholar
[26]
Park C W, Ah C S, Ahn C G, Analysis of configuration of surface-immobilized proteins by Si nanochannel field effect transistor biosensor. Procedia Chemistry, 2009, 1(1): 674–677
CrossRef Google scholar
[27]
Kim A, Ah C S, Park C W, Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosensors & Bioelectronics, 2010, 25(7): 1767–1773
CrossRef Google scholar
[28]
Stern E, Wagner R, Sigworth F J, Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007, 7(11): 3405–3409
CrossRef Google scholar

Acknowledgements

The authors acknowledge the assistance of fabrication and characterization from Minnesota Nano Center and the Characterization Facility at the University of Minnesota.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, indicating if changes were made.

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(297 KB)

Accesses

Citations

Detail

Sections
Recommended

/