Single-chip 3D electric field microsensor

Biyun LING, Yu WANG, Chunrong PENG, Bing LI, Zhaozhi CHU, Bin LI, Shanhong XIA

PDF(599 KB)
PDF(599 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (4) : 581-590. DOI: 10.1007/s11465-017-0454-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Single-chip 3D electric field microsensor

Author information +
History +

Abstract

This paper presents a single-chip 3D electric field microsensor, in which a sensing element is set at the center to detect the Z-axis component of an electrostatic field. Two pairs of sensing elements with the same structure are arranged in a cross-like configuration to measure the X- and Y-axis electrostatic field components. An in-plane rotary mechanism is used in the microsensor to detect the X-, Y-, and Z-axis electrostatic field components simultaneously. The proposed microsensor is compact and presents high integration. The microsensor is fabricated through a MetalMUMPS process. Experimental results show that in the range of 0–50 kV/m, the linearity errors of the microsensor are within 5.5%, and the total measurement errors of the three electrostatic field components are less than 14.04%.

Keywords

electric field microsensor / three-dimensional / single-chip / in-plane rotation

Cite this article

Download citation ▾
Biyun LING, Yu WANG, Chunrong PENG, Bing LI, Zhaozhi CHU, Bin LI, Shanhong XIA. Single-chip 3D electric field microsensor. Front. Mech. Eng., 2017, 12(4): 581‒590 https://doi.org/10.1007/s11465-017-0454-x

References

[1]
Maruvada P S, Dallaire R D, Pedneault R. Development of field-mill instruments for ground-level and above-ground electric field measurement under HVDC transmission lines. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(3): 738–744
CrossRef Google scholar
[2]
Yang P, Chen B, Wen X, A novel MEMS chip-based atmospheric electric field sensor for lightning hazard warning applications. In: Proceedings of IEEE Sensors. Busan: IEEE, 2015, 1–4
CrossRef Google scholar
[3]
Wooi C L, Abdul-Malek Z, Ahmad N A, Statistical analysis of electric field parameters for negative lightning in Malaysia. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 146: 69–80
CrossRef Google scholar
[4]
Kasaba Y, Hayakawa H, Ishisaka K, Evaluation of DC electric field measurement by the double probe system aboard the Geotail spacecraft. Advances in Space Research, 2006, 37(3): 604–609 
CrossRef Google scholar
[5]
Vaivads A, Eriksson A I, André M, Low-frequency electric field and density fluctuation measurements on Solar Orbiter. Advances in Space Research, 2007, 39(9): 1502–1509 
CrossRef Google scholar
[6]
Pedersen A, Cattell C A, Fälthammar C G, Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites. Space Science Reviews, 1984, 37(3–4): 269–312 
CrossRef Google scholar
[7]
Tant P, Bolsens B, Sels T, Design and application of a field mill as a high-voltage DC meter. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1459–1464
CrossRef Google scholar
[8]
Mathews S, Farrell G, Semenova Y. All-fiber polarimetric electric field sensing using liquid crystal infiltrated photonic crystal fibers. Sensors and Actuators A: Physical, 2011, 167(1): 54–59
CrossRef Google scholar
[9]
Zhu T, Ou Z, Han M, Propylene carbonate based compact fiber Mach-Zehnder interferometric electric field sensor. Journal of Lightwave Technology, 2013, 31(10): 1566–1572
CrossRef Google scholar
[10]
Toney J E, Tarditi A G, Pontius P, Detection of energized structures with an electro-optic electric field sensor. IEEE Sensors Journal, 2014, 14(5): 1364–1369 
CrossRef Google scholar
[11]
Hsu C H, Muller R S. Micromechanical electrostatic voltmeter. In: Proceedings of International Conference on Solid-State Sensors and Actuators. San Francisco: IEEE, 1991, 659–662
CrossRef Google scholar
[12]
Horenstein M N, Stone P R. A micro-aperture electrostatic field mill based on MEMS technology. Journal of Electrostatics, 2001, 51–52: 515–521
CrossRef Google scholar
[13]
Riehl P S, Scott K L, Muller R S, Electrostatic charge and field sensors based on micromechanical resonators. Journal of Microelectromechanical Systems, 2003, 12(5): 577–589
CrossRef Google scholar
[14]
Peng C, Chen X, Ye C, Design and testing of a micromechanical resonant electrostatic field sensor. Journal of Micromechanics and Microengineering, 2006, 16(5): 914–919
CrossRef Google scholar
[15]
Lundberg K H, Shafran J S, Kuang J, A self-resonant MEMS-based electrostatic field sensor. In: Proceedings of the 2006 American Control Conference. Minneapolis: IEEE, 2006, 1221–1226
CrossRef Google scholar
[16]
Chen X, Peng C, Tao H, Thermally driven micro-electrostatic fieldmeter. Sensors and Actuators A: Physical, 2006, 132(2): 677–682
CrossRef Google scholar
[17]
Bahreyni B, Wijeweera G, Shafai C, Analysis and design of a micromachined electric-field sensor. Journal of Microelectromechanical Systems, 2008, 17(1): 31–36
CrossRef Google scholar
[18]
Ghionea S, Smith G, Pulskamp J, MEMS electric-field sensor with lead zirconate titanate (PZT)-actuated electrodes. In: Proceedings of 2013 IEEE Sensors. Baltimore: IEEE, 2013, 1–4
CrossRef Google scholar
[19]
Yang P, Peng C, Fang D, Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002
CrossRef Google scholar
[20]
Wang Y, Fang D, Feng K, A novel micro electric field sensor with X-Y dual axis sensitive differential structure. Sensors and Actuators A: Physical, 2015, 229: 1–7
CrossRef Google scholar
[21]
Gao Z, Yu Z, Zeng R, Research on measuring methods and sensors of high voltage DC electric field. In: Proceedings of International Conference on Information Science, Electronics and Electrical Engineering (ISEEE). Sapporo: IEEE, 2014, 850–854
CrossRef Google scholar
[22]
Li C, Shen X, Zeng R. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal. Applied Optics, 2013, 52(31): 7580–7585
CrossRef Google scholar
[23]
Wen X, Fang D, Peng C, Three dimensional electric field measurement method based on coplanar decoupling structure. In: Proceedings of 2014 IEEE Sensors. Valencia: IEEE, 2014, 582–585
CrossRef Google scholar
[24]
Fang Y, Peng C, Fang D, Micro 3-dimensional folding electric field sensor. Transducer and Microsystem Technologies, 2016, 35(5): 67–73 (in Chinese)
[25]
Yeh J A, Chen C, Lui Y. Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension. Journal of Micromechanics and Microengineering, 2005, 15(1): 201–206
CrossRef Google scholar
[26]
Allen C, Ramaswamy M, Stafford J, MetalMUMPs Design Handbook, Revision 4.0, 2006

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61327810) and the National High Technology Research and Development Program of China (863 Project) (Grant No. 2015AA042602).ƒ

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(599 KB)

Accesses

Citations

Detail

Sections
Recommended

/