Effects of elastic support on the dynamic behaviors of the wind turbine drive train

Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN

PDF(621 KB)
PDF(621 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 348-356. DOI: 10.1007/s11465-017-0420-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of elastic support on the dynamic behaviors of the wind turbine drive train

Author information +
History +

Abstract

The reliability and service life of wind turbines are influenced by the complex loading applied on the hub, especially amidst a poor external wind environment. A three-point elastic support, which includes the main bearing and two torque arms, was considered in this study. Based on the flexibilities of the planet carrier and the housing, a coupled dynamic model was developed for a wind turbine drive train. Then, the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed. Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train. Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train. A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing, whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing. The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.

Keywords

wind turbine drive train / elastic support / dynamic behavior / frequency response function

Cite this article

Download citation ▾
Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN. Effects of elastic support on the dynamic behaviors of the wind turbine drive train. Front. Mech. Eng., 2017, 12(3): 348‒356 https://doi.org/10.1007/s11465-017-0420-7

References

[1]
Guo Y, Keller J, Lacava W. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint. Office of Scientific & Technical Information Technical Reports NREL/CP-5000-55968. 2012
[2]
Guo Y, Bergua R, Dam J V,  Improving wind turbine drivetrain designs to minimize the impacts of non-torque loads. Wind Energy (Chichester, England), 2014, 18(12): 2199–2222 
CrossRef Google scholar
[3]
Helsen J, Peeters P, Vanslambrouck K,  The dynamic behavior induced by different wind turbine gearbox suspension methods assessed by means of the flexible multibody technique. Renewable Energy, 2014, 69(3): 336–346
CrossRef Google scholar
[4]
Helsen J, Vanhollebeke F, Marrant B,  Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes. Renewable Energy, 2011, 36(11): 3098–3113
CrossRef Google scholar
[5]
Jin X, Li L, Ju W,  Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines. Renewable Energy, 2016, 90: 336–351 
CrossRef Google scholar
[6]
He Y, Huang W, Li C, Multi flexible body dynamics modeling and simulation analysis of large scale wind turbine drive train. Journal  of  Mechanical  Engineering, 2014, 50(1): 61–69  (in Chinese)
[7]
Ericson T M, Parker R G. Experimental measurement of the effects of torque on the dynamic behavior and system parameters of planetary gears. Mechanism and Machine Theory, 2014, 74(74): 370–389
CrossRef Google scholar
[8]
Zhao M, Ji J. Nonlinear torsional vibrations of a wind turbine gearbox. Applied Mathematical Modelling, 2015, 39(16): 4928–4950
CrossRef Google scholar
[9]
Wei S, Zhao J, Han Q,  Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renewable Energy, 2015, 78: 60–67
CrossRef Google scholar
[10]
Yi P, Zhang C, Guo L,  Dynamic modeling and analysis of load sharing characteristics of wind turbine gearbox. Advances in Mechanical Engineering, 2015, 7(3): 1–16 
CrossRef Google scholar
[11]
Zhu C, Xu X, Liu H,  Research on dynamical characteristics of wind turbine gearboxes with flexible pins. Renewable Energy, 2014, 68(7): 724–732
CrossRef Google scholar
[12]
Zhu C, Chen S, Liu H,  Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum. Journal of Mechanical Science and Technology, 2014, 28(6): 2033–2040 
CrossRef Google scholar
[13]
Zhai H, Zhu C, Song C,  Influences of carrier assembly errors on the dynamic characteristics for wind turbine gearbox. Mechanism and Machine Theory, 2016, 103: 138–147
CrossRef Google scholar
[14]
ISO. International Standard ISO 6336-1 Second Edition, 2007
[15]
SIMPACK. Retrieved from http://www.simpack.com/
[16]
Link H, Lacava W, van Dam J,  Gearbox Reliability Collaborative Project Report: Findings from Phase 1 and Phase 2 Testing. Office of Scientific & Technical Information Technical Reports NREL/TP-5000-51885. 2011
[17]
Keller J, Guo Y, Lacava W,  Gearbox Reliability Collaborative Phase 1 and 2: Testing and Modeling Results; Preprint. Office of Scientific & Technical Information Technical Reports NREL/CP-5000-55207. 2012
[18]
LaCava W, van Dam J, Wallen R,  NREL Gearbox Reliability Collaborative: Comparing In-Field Gearbox Response to Different Dynamometer Test Conditions: Preprint. Office of Scientific & Technical Information Technical Reports NREL/CP-5000-51690. 2011
[19]
Helsen J.The dynamics of high power density gear units with focus on the wind turbine application. Dissertation for the Doctoral Degree. Louvain: Catholic University of Louvain, 2012
[20]
Keller J A, Guo Y, Sethuraman L.Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads. Office of Scientific & Technical Information Technical Reports NREL/TP-5000-65321. 2016
[21]
Huang W. Multibody system modeling and simulation analysis and research on dynamic characteristic of wind turbine. Dissertation for the Master’s Degree. Chongqing: Chongqing University, 2013 (in Chinese)

Acknowledgments

The authors are grateful for the financial support given by the National Natural Science Foundation of China (Grant Nos. 51405043 and 51575060) and the Innovation Project of the City of Chongqing (Grant Nos. cstc2015zdcy-ztzx70010 and cstc2015zdcy-ztzx70012).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(621 KB)

Accesses

Citations

Detail

Sections
Recommended

/