Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

Yun KONG , Tianyang WANG , Zheng LI , Fulei CHU

Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 406 -419.

PDF (832KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 406 -419. DOI: 10.1007/s11465-017-0419-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

Author information +
History +
PDF (832KB)

Abstract

Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

Keywords

wind turbine / planet gear fault / feature extraction / spectral kurtosis / time wavelet energy spectrum

Cite this article

Download citation ▾
Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum. Front. Mech. Eng., 2017, 12(3): 406-419 DOI:10.1007/s11465-017-0419-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amirat YBenbouzid  M E HAl-Ahmar  EA brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renewable & Sustainable Energy Reviews200913(9): 2629–2636

[2]

Hameed ZHong  Y SCho  Y MCondition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable & Sustainable Energy Reviews200913(1): 1–39

[3]

Feng ZLiang  MZhang Y Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renewable Energy201247: 112–126

[4]

Younus A M D Yang B S . Intelligent fault diagnosis of rotating machinery using infrared thermal image. Expert Systems with Applications201239(2): 2082–2091

[5]

Toutountzakis TTan  C KMba  D. Application of acoustic emission to seeded gear fault detection. NDT & E International200538(1): 27–36

[6]

Ottewill J ROrkisz  M. Condition monitoring of gearboxes using synchronously averaged electric motor signals. Mechanical Systems and Signal Processing201338(2): 482–498

[7]

Li CLiang  M. Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction. Measurement Science & Technology201122(8): 085701

[8]

Samuel P DPines  D J. A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration2005282(1‒2): 475–508

[9]

Lei YLin  JZuo M J Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement201448: 292–305

[10]

Li CSanchez  VZurita G Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement. ISA Transactions201660: 274–284

[11]

Cong FZhong  WTong S Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis. Journal of Sound and Vibration2015344: 447–463

[12]

Ho DRandall  R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems and Signal Processing200014(5): 763–788

[13]

Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals. Mechanical Systems and Signal Processing200620(2): 282–307

[14]

Antoni J. Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing200721(1): 108–124

[15]

Antoni JRandall  R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing200620(2): 308–331

[16]

Wang YLiang  M. An adaptive SK technique and its application for fault detection of rolling element bearings. Mechanical Systems and Signal Processing201125(5): 1750–1764

[17]

Barszcz TRandall  R B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing200923(4): 1352–1365

[18]

Lei YLin  JHe Z . Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing201125(5): 1738–1749

[19]

Yan RGao  RChen X . Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing201496: 1–15

[20]

Chen JLi  ZPan J . Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing201670 ‒ 71: 1–35

[21]

Lin JQu  L. Feature extraction based Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration2000234(1): 135–148

[22]

Jiang YTang  BLiu W . Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD. Renewable Energy201136(8): 2146–2153

[23]

Dwyer R F. Detection of non-Gaussian signal by frequency domain kurtosis estimation. In: Proceedings of the International Conference on Acoustic, Speech, and Signal Processing. Boston1983, 607–610

[24]

Wang YXiang  JMarkert R . Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mechanical Systems and Signal Processing201666–67: 679–698

[25]

Program for the fast kurtogram provided by J. Antoni. Retrieved from 

[26]

Chu FPeng  ZFeng Z . Modern Signal Processing Methods in Machinery Fault Diagnosis. Beijing: Science Press, 2009, 34–37 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (832KB)

3467

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/