Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU

PDF(832 KB)
PDF(832 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (3) : 406-419. DOI: 10.1007/s11465-017-0419-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

Author information +
History +

Abstract

Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

Keywords

wind turbine / planet gear fault / feature extraction / spectral kurtosis / time wavelet energy spectrum

Cite this article

Download citation ▾
Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum. Front. Mech. Eng., 2017, 12(3): 406‒419 https://doi.org/10.1007/s11465-017-0419-0

References

[1]
Amirat Y, Benbouzid  M E H, Al-Ahmar  E, A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2629–2636
CrossRef Google scholar
[2]
Hameed Z, Hong  Y S, Cho  Y M, Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable & Sustainable Energy Reviews, 2009, 13(1): 1–39
CrossRef Google scholar
[3]
Feng Z, Liang  M, Zhang Y , Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renewable Energy, 2012, 47: 112–126
CrossRef Google scholar
[4]
Younus A M D ,  Yang B S . Intelligent fault diagnosis of rotating machinery using infrared thermal image. Expert Systems with Applications, 2012, 39(2): 2082–2091
CrossRef Google scholar
[5]
Toutountzakis T, Tan  C K, Mba  D. Application of acoustic emission to seeded gear fault detection. NDT & E International, 2005, 38(1): 27–36
CrossRef Google scholar
[6]
Ottewill J R, Orkisz  M. Condition monitoring of gearboxes using synchronously averaged electric motor signals. Mechanical Systems and Signal Processing, 2013, 38(2): 482–498
CrossRef Google scholar
[7]
Li C, Liang  M. Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction. Measurement Science & Technology, 2011, 22(8): 085701
CrossRef Google scholar
[8]
Samuel P D, Pines  D J. A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration, 2005, 282(1‒2): 475–508
CrossRef Google scholar
[9]
Lei Y, Lin  J, Zuo M J , Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement, 2014, 48: 292–305
CrossRef Google scholar
[10]
Li C, Sanchez  V, Zurita G , Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement. ISA Transactions, 2016, 60: 274–284
CrossRef Google scholar
[11]
Cong F, Zhong  W, Tong S , Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis. Journal of Sound and Vibration, 2015, 344: 447–463
CrossRef Google scholar
[12]
Ho D, Randall  R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems and Signal Processing, 2000, 14(5): 763–788
CrossRef Google scholar
[13]
Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals. Mechanical Systems and Signal Processing, 2006, 20(2): 282–307
CrossRef Google scholar
[14]
Antoni J. Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 2007, 21(1): 108–124
CrossRef Google scholar
[15]
Antoni J, Randall  R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 2006, 20(2): 308–331
CrossRef Google scholar
[16]
Wang Y, Liang  M. An adaptive SK technique and its application for fault detection of rolling element bearings. Mechanical Systems and Signal Processing, 2011, 25(5): 1750–1764
CrossRef Google scholar
[17]
Barszcz T, Randall  R B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing, 2009, 23(4): 1352–1365
CrossRef Google scholar
[18]
Lei Y, Lin  J, He Z , . Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 2011, 25(5): 1738–1749
CrossRef Google scholar
[19]
Yan R, Gao  R, Chen X . Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15
CrossRef Google scholar
[20]
Chen J, Li  Z, Pan J , . Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 2016, 70 ‒ 71: 1–35
CrossRef Google scholar
[21]
Lin J, Qu  L. Feature extraction based Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 2000, 234(1): 135–148
CrossRef Google scholar
[22]
Jiang Y, Tang  B, Liu W . Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD. Renewable Energy, 2011, 36(8): 2146–2153
CrossRef Google scholar
[23]
Dwyer R F. Detection of non-Gaussian signal by frequency domain kurtosis estimation. In: Proceedings of the International Conference on Acoustic, Speech, and Signal Processing. Boston, 1983, 607–610
[24]
Wang Y, Xiang  J, Markert R , . Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mechanical Systems and Signal Processing, 2016, 66–67: 679–698
CrossRef Google scholar
[25]
Program for the fast kurtogram provided by J. Antoni. Retrieved from https://cn.mathworks.com/matlabcentral/fileexchange/48912-fast-kurtogram
[26]
Chu F, Peng  Z, Feng Z , . Modern Signal Processing Methods in Machinery Fault Diagnosis. Beijing: Science Press, 2009, 34–37 (in Chinese)

Acknowledgments

The authors gratefully appreciate all the reviewers and the editor for their valuable comments and advices about our manuscript. The authors gratefully acknowledge the support of this research work by the National Natural Science Foundation of China (Grant No. 51335006).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(832 KB)

Accesses

Citations

Detail

Sections
Recommended

/