Variable eccentric distance-based tool path generation for orthogonal turn-milling

Fangyu PENG , Wei WANG , Rong YAN , Xianyin DUAN , Bin LI

Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 352 -366.

PDF (2068KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (4) : 352 -366. DOI: 10.1007/s11465-015-0361-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Variable eccentric distance-based tool path generation for orthogonal turn-milling

Author information +
History +
PDF (2068KB)

Abstract

This study proposes an algorithm for maximizing strip width in orthogonal turn-milling based on variable eccentric distance. The machining error model is first established based on the local cutting profile at the contact line. The influencing factors of the strip width are then investigated to analyze their features and determine an optimizing strategy. The optimized model for maximum machining strip width is formulated by adopting a variable eccentric distance. Hausdorff distance and Fréchet distance are introduced in this study to implement the constraint function of the machining error in the optimized model. The computing procedure is subsequently provided. Simulations and experiments have been conducted to verify the effectiveness of the proposed algorithm.

Keywords

orthogonal turn-milling / variable eccentric distance / local cutting profile / machining strip-width maximization

Cite this article

Download citation ▾
Fangyu PENG, Wei WANG, Rong YAN, Xianyin DUAN, Bin LI. Variable eccentric distance-based tool path generation for orthogonal turn-milling. Front. Mech. Eng., 2015, 10(4): 352-366 DOI:10.1007/s11465-015-0361-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schulz HSpur G. High speed turn-milling—A new precision manufacturing technology for the machining of rotationally symmetrical workpieces. CIRP Annals-Manufacturing Technology199039(1): 107–109 

[2]

Choudhury S KBajpai J B. Investigation in orthogonal turn-milling towards better surface finish. Journal of Materials Processing Technology2005170(3): 487–493

[3]

Karadkar R BPande S S. Feature based automatic CNC code generation for prismatic parts. Computers in Industry199628(2): 137–150

[4]

Waiyagan KBohez E L J. Intelligent feature based process planning for five-axis mill-turn parts. Computers in Industry200960(5): 296–316

[5]

Jiang ZJia C. Vector modeling of turn-milling motion. Chinese Journal of Mechanical Engineering200339(04): 15–18

[6]

Xia JGe Q. An exact representation of effective cutting shapes of 5-axis CNC machining using rational Bezier and B-spline tool motions. In: Proceedings of 2001 ICRE, IEEE International Conference on Robotics and Automation. Seoul, IEEE2001, 342–347 

[7]

Kikkawa KNakamura KMizugaki Y. An approach of estimating machining error by heuristic geometrical rule in 5-axis ball-nosed end milling. In: Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM212003, 415–420

[8]

Li CMann SBedi S. Error measurements for flank milling. Computer Aided Design200537(14): 1459–1468

[9]

Chiou C JLee Y S. Swept surface determination for five-axis numerical control machining. International Journal of Machine Tools & Manufacture200242(14): 1497–1507

[10]

Weinert KDu SDamm P Swept volume generation for the simulation of machining processes. International Journal of Machine Tools & Manufacture200444(6): 617–628

[11]

Gong HCao LLiu J. Second-order approximation of tool envelope surface for 5-axis machining with single point contact. Computer Aided Design200840(5): 604–615

[12]

Zhu LDing HXiong Y. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (I): Third-order approximation of tool envelope surface. Science China Technological Sciences201053(7): 1904–1912

[13]

Sarma R. Flat-ended tool swept sections for five-axis NC machining of sculptured surfaces. Journal of Manufacturing Science and Engineering2000122(1): 158–165

[14]

Ni YMa DZhang H. Optimal orientation control for torus tool 5-axis sculptured surface NC machining. Chinese Journal of Mechanical Engineering200137(02): 87–91

[15]

Warkentin AIsmail FBedi S. Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Computer Aided Geometric Design200017(1): 83–100

[16]

Yoon JPottmann HLee Y. Locally optimal cutting positions for 5-axis sculptured surface machining. Computer Aided Design200335(1): 69–81

[17]

Fan JBall A. Quadric method for cutter orientation in five-axis sculptured surface machining. International Journal of Machine Tools & Manufacture200848(7−8): 788–801

[18]

Xu RChen ZChen W. Dual drive curve tool path planning method for 5-axis NC machining of sculptured surfaces. Chinese Journal of Aeronautics201023(4): 486–494

[19]

Sun YGuo DJia Z. Iso-parametric tool path generation from triangular meshes for free-form surface machining. International Journal of Advanced Manufacturing Technology200628(7−8): 721–726

[20]

Zhu LDing HXiong Y. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (II): Tool positioning strategy. Science China Technological Sciences201053(8): 2190–2197

[21]

Lee YChiou C. Unfolded projection approach to machining non-coaxial parts on mill-turn machines. Computers in Industry199939(2): 147–173

[22]

Rao ASarma R. On local gouging in five-axis sculptured surface machining using flat-end tools. Computer Aided Design200032(7): 409–420

[23]

Zhu LZheng GDing H. Formulating the swept envelope of rotary cutter undergoing general spatial motion for multi-axis NC machining. International Journal of Machine Tools & Manufacture200949(2): 199–202

[24]

Chiou J C JLee Y S. Optimal tool orientation for five-axis tool-end machining by swept envelope approach. Journal of Manufacturing Science and Engineering2005127(4): 810–818

[25]

Floriani L D. Shape Analysis and Structuring. Berlin: Springer, 2008

[26]

Chen XMa WXu G. Computing the Hausdorff distance between two B-spline curves. Computer Aided Design201042(12): 1197–1206

[27]

Buchin KBuchin MWenk C. Computing the Fréchet distance between simple polygons. Computational Geometry200841(1-2): 2–20

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2068KB)

3035

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/