Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

Diego CABRERA , Fernando SANCHO , René-Vinicio SÁNCHEZ , Grover ZURITA , Mariela CERRADA , Chuan LI , Rafael E. VÁSQUEZ

Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 277 -286.

PDF (1892KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 277 -286. DOI: 10.1007/s11465-015-0348-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition

Author information +
History +
PDF (1892KB)

Abstract

This paper addresses the development of a random forest classifier for the multi-class fault diagnosis in spur gearboxes. The vibration signal’s condition parameters are first extracted by applying the wavelet packet decomposition with multiple mother wavelets, and the coefficients’ energy content for terminal nodes is used as the input feature for the classification problem. Then, a study through the parameters’ space to find the best values for the number of trees and the number of random features is performed. In this way, the best set of mother wavelets for the application is identified and the best features are selected through the internal ranking of the random forest classifier. The results show that the proposed method reached 98.68% in classification accuracy, and high efficiency and robustness in the models.

Keywords

fault diagnosis / spur gearbox / wavelet packet decomposition / random forest

Cite this article

Download citation ▾
Diego CABRERA, Fernando SANCHO, René-Vinicio SÁNCHEZ, Grover ZURITA, Mariela CERRADA, Chuan LI, Rafael E. VÁSQUEZ. Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition. Front. Mech. Eng., 2015, 10(3): 277-286 DOI:10.1007/s11465-015-0348-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walha LFakhfakh THaddar M. Backlash effect on dynamic analysis of a two-stage spur gear system. Journal of Failure Analysis and Prevention20066(3): 60–68

[2]

Abbes M SFakhfakh THaddar M Effect of transmission error on the dynamic behaviour of gearbox housing. International Journal of Advanced Manufacturing Technology200734(3–4): 211–218

[3]

Tian ZZuo MWu S. Crack propagation assessment for spur gears using model-based analysis and simulation. Journal of Intelligent Manufacturing201223(2): 239–253

[4]

Ebersbach SPeng Z. Fault diagnosis of gearbox based on monitoring of lubricants, wear debris, and vibration. In: Wang QChung Y W, eds. Encyclopedia of Tribology. New York: Springer, 2013, 1059–1064 

[5]

Rgeai MGu FBall A Gearbox fault detection using spectrum analysis of the drive motor current signal. In: Kiritsis DEmmanouilidis CKoronios A, eds. Engineering Asset Lifecycle Management. London: Springer, 2010, 758–769

[6]

Hong LDhupia J S. A time domain approach to diagnose gearbox fault based on measured vibration signals. Journal of Sound and Vibration2014333(7): 2164–2180

[7]

Rafiee JArvani FHarifi A Intelligent condition monitoring of a gearbox using artificial neural network. Mechanical Systems and Signal Processing200721(4): 1746–1754

[8]

Sanchez RArpi AMinchala L. Fault identification and classification of spur gearbox with feed forward back propagation artificial neural network. In: Proceedings of the 2012 Andean Region International Conference. Washington, D.C.: IEEE, 2012, 215 

[9]

Barakat MLefebvre DKhalil M Parameter selection algorithm with self-adaptive growing neural network classifier for diagnosis issues. International Journal of Machine Learning and Cybernetics20134(3): 217–233

[10]

Yang B SHan TAn J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing200418(3): 645–657

[11]

Jiang ZFu HLi L. Support vector machine for mechanical faults classification. Journal of Zhejiang University SCIENCE A20056(5): 433–439

[12]

Jiao BXu Z. Multi-classification LSSVM application in fault diagnosis of wind power gearbox. In: Zhang T, ed. Mechanical Engineering  and  Technology.  Berlin:  Springer,  2012,  125:  277–283

[13]

Kang YWang CChang Y. Gear fault diagnosis in time domains by using Bayesian networks. In: Melin PCastillo ORamirez E, eds. Analysis and Design of Intelligent Systems using Soft Computing Techniques. Berlin: Springer, 200741: 618–627

[14]

Breiman LFriedman JOlshen R Classification and regression trees. The Wadsworth and Brooks-Cole statistics-probability series. Boca Raton: Chapman & Hall, 1984

[15]

Breiman L. Random forests. Machine Learning200145(1): 5–32

[16]

Criminisi AShotton J. Classification forests. In: Criminisi AShotton J, eds. Decision Forests for Computer Vision and Medical Image Analysis. London: Springer, 2013, 25–45

[17]

Han XYang B SLee S J. Application of random forest algorithm in machine fault diagnosis. In: Mathew JKennedy JMa L, eds. Engineering Asset Management. London: Springer, 2006, 779–784 

[18]

Yang B SDi XHan T. Random forests classifier for machine fault diagnosis. Journal of Mechanical Science and Technology200822(9): 1716–1725

[19]

Karabadji NKhelf ISeridi H Genetic optimization of decision tree choice for fault diagnosis in an industrial ventilator. In: Fakhfakh TBartelmus WChaari F, eds. Condition Monitoring of Machinery in Non-Stationary Operations. Berlin: Springer, 2012, 277–283 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1892KB)

4375

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/