An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow

Thiago ANTONINI ALVES , Paulo H. D. SANTOS , Murilo A. BARBUR

Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 263 -276.

PDF (3022KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 263 -276. DOI: 10.1007/s11465-015-0345-y
RESEARCH ARTICLE
RESEARCH ARTICLE

An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow

Author information +
History +
PDF (3022KB)

Abstract

In this research, the temperatures of three-dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G+ with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients (g+) caused by the forced convection-conduction nature of the heaters’ cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a two-dimensional (2D) array by ANSYS/FluentTM 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients.

Keywords

channel flow / conjugate forced convection-conduction cooling / conjugate influence coefficients / discrete heating / invariant descriptor / thermal management

Cite this article

Download citation ▾
Thiago ANTONINI ALVES, Paulo H. D. SANTOS, Murilo A. BARBUR. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow. Front. Mech. Eng., 2015, 10(3): 263-276 DOI:10.1007/s11465-015-0345-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ortega A. Conjugate Heat Transfer in Forced Air Cooling of Electronic Components. In Kim S JLee S W, eds. Air Cooling Technology for Electronic Equipment. Boca Raton: CRC Press, 1996, 103–171

[2]

Nakayama W. Forced convective/conductive conjugate heat transfer in microelectronic equipment. Annual Review of Heat Transfer19978(8): 1–45

[3]

Moffat R J. What’s new in convective heat transfer? International Journal of Heat and Fluid Flow199819(2): 90–101

[4]

Arvizu D EMoffat R J. The use of superposition in calculating cooling requirements for circuit-board-mounted electronic components. In: Proceeding of 32nd Electronic Components Conference. San Diego, 1982, 133–144

[5]

Arvizu D EOrtega AMoffat R J. Cooling Electronic Components: Forced Convection Experiments with an Air-Cooled Array. In: Oktay SMoffat R J, eds. Electronics Cooling. New York: ASME, 1985

[6]

Moffat R JAnderson A M. Applying heat transfer coefficient data to electronics cooling. Journal of Heat Transfer1990112(4): 882–890

[7]

Anderson A MMoffat R J. The adiabatic heat transfer coefficient and the superposition kernel function: Part 1—Data for arrays of flatpacks for different flow conditions. Journal of Electronic Packaging1992114(1): 14–21

[8]

Anderson A MMoffat R J. The adiabatic heat transfer coefficient and the superposition kernel function: Part 2—Modeling flatpack data as a function of channel turbulence. Journal of Electronic Packaging1992114(1): 22–28

[9]

Moffat R J. hadiabatic and umax⁡′Journal of Electronic Packaging2004126(4): 501–509

[10]

Eckert E R GDrake R M. Analysis of Heat and Mass Transfer. New York: McGraw-Hill, 1972

[11]

Sparrow E MRamsey J WAltemani C A C. Experiments on in-line pin fin arrays and performance comparisons with staggered arrays. Journal of Heat Transfer1980102(1): 44–50

[12]

Garimella S VEibeck P A. Enhancement of single phase convective heat transfer from protruding elements using vortex generators. International Journal of Heat and Mass Transfer199134(9): 2431–2433

[13]

Kang S S. The thermal wake function for rectangular electronic modules. Journal of Electronic Packaging1994116(1): 55–59

[14]

Molki MFaghri MOzbay O. A correlation for heat transfer and wake effect in the entrance region of an in-line array of rectangular blocks simulation electronic components. Journal of Heat Transfer1995117(1): 40–46

[15]

Nakayama WPark S H. Conjugate heat transfer from a single surface-mounted block to forced convective air flow in a channel. Journal of Heat Transfer1996118(2): 301–309

[16]

Wirtz R A. Forced Air Cooling of Low-Profile Package Arrays. In: Kim S JLee S W, eds. Air Cooling Technology for Electronic Equipment. Boca Raton: CRC Press, 1996, 81–101

[17]

Molki R JFaghri M. Temperature of in-line array of electronic components simulated by rectangular blocks. Electronics Cooling20006: 26–32

[18]

Rhee JMoffat R J. Experimental estimate of the continuous one-dimensional kernel function in a rectangular duct with forced convection. Journal of Heat Transfer2006128(8): 811–818

[19]

Alves T AAltemani C A C. Convective cooling of three discrete heat sources in channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering200830(3): 245–252

[20]

Alves T AAltemani C A C. Conjugate cooling of a discrete heater in laminar channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering201133(3): 278–286

[21]

Alves T AAltemani C A C. Conjugate cooling of a protruding heater in a channel with distinct flow constraints. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering201313(11): 9–25

[22]

Hacker J MEaton J K. Measurements of heat transfer in separated and reattaching flow with spatially varying thermal boundary conditions. International Journal of Heat and Fluid Flow199718(1): 131–141

[23]

Batchelder K AEaton J K. Practical experience with the discrete Green’s function approach to convective heat transfer. Journal of Heat Transfer2001123(1): 70–76

[24]

Mukerji DEaton J KMoffat R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps. Journal of Heat Transfer2004126(2): 202–210

[25]

Mukerji DEaton J K. Discrete Green’s function measurements in a single passage turbine model. Journal of Heat Transfer2005127(4): 366–377

[26]

Booten CEaton J K. Discrete Green’s function measurements in internal flows. Journal of Heat Transfer2005127(7): 692–698

[27]

Booten CEaton J K. Discrete Green’s function measurements in a serpentine cooling passage. Journal of Heat Transfer2007129(12): 1686–1696

[28]

Davalath JBayazitoglu Y. Forced convection cooling across rectangular blocks. Journal of Heat Transfer1987109(2): 321–328

[29]

Anderson A M. Decoupling convective and conductive heat transfer using the adiabatic heat transfer coefficient. Journal of Electronic Packaging1994116(4): 310–316

[30]

Alves T AAltemani C A C. An invariant descriptor for heaters temperature prediction in conjugate cooling. International Journal of Thermal Sciences201258: 92–101

[31]

Bergman LLavine A SIncropera F P. Fundamentals of Heat and Mass Transfer. New Jersey: John Wiley & Sons, 2012

[32]

Morris G KGarimella S V. Thermal wake downstream of a three-dimensional obstacle. Experimental Thermal and Fluid Science199612(1): 65–74

[33]

Bar-Cohen AWatwe A APrasher R S. Heat Transfer in Electronic Equipment. In: Bejan AKraus A D, eds. Heat Transfer Handbook. New Jersey: John Wiley & Sons, 2003, 947–1027

[34]

Zeng YVafai K. An investigation of convective cooling of an array of channel-mounted obstacles. Numerical Heat Transfer200955(11): 967–982

[35]

Ramadhyani SMoffatt D FIncropera F P. Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. International Journal of Heat and Mass Transfer198528(10): 1945–1952

[36]

Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980

[37]

Leung C WChen SChan T L. Numerical simulation of laminar forced convection in an air-cooled horizontal printed circuit board assembly. Numerical Heat Transfer200037(4): 373–393

[38]

Nakamura HIgarashi TTsutsui T. Local heat transfer around a wall-mounted cube in the turbulent boundary layer. International Journal of Heat and Mass Transfer200144(18): 3385–3395

[39]

Hwang J YYang K S. Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow. Physics of Fluids200416(7): 2382

[40]

Huang P CYang C FHwang J J. Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. International Journal of Heat and Mass Transfer200548(3−4): 647–664

[41]

Nakajima MYanaoka HYoshikawa H. Numerical simulation of three-dimensional separated flow and heat transfer around staggered surface-mounted rectangular blocks in a channel. Numerical Heat Transfer200547(7): 691–708

[42]

Yaghoubi MVelayati E. Undeveloped convective heat transfer from an array of cubes in cross-stream direction. International Journal of Thermal Sciences200544(8): 756–765

[43]

Premachandran BBalaji C. Conjugate mixed convection with surface radiation from a horizontal channel with protruding heat sources. International Journal of Heat and Mass Transfer200649(19−20): 3568–3582

[44]

ANSYS/FluentTM. Solving a conjugate heat transfer problem using ANSYS/FluentTM2011Tutorial: 1–30

[45]

Barbur M A. Numerical Validation of the Invariant Descriptor of Conjugate Forced Convection-Conduction Cooling of Protruding 3D Heaters in Channel Flow, Final Course Assignment. Ponta Grossa: Federal University of Technology-Paraná Brazil2014, 81 (in Portuguese)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (3022KB)

1944

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/