An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow

Thiago ANTONINI ALVES, Paulo H. D. SANTOS, Murilo A. BARBUR

PDF(3022 KB)
PDF(3022 KB)
Front. Mech. Eng. ›› 2015, Vol. 10 ›› Issue (3) : 263-276. DOI: 10.1007/s11465-015-0345-y
RESEARCH ARTICLE
RESEARCH ARTICLE

An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow

Author information +
History +

Abstract

In this research, the temperatures of three-dimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G+ with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients (g+) caused by the forced convection-conduction nature of the heaters’ cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a two-dimensional (2D) array by ANSYS/FluentTM 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients.

Keywords

channel flow / conjugate forced convection-conduction cooling / conjugate influence coefficients / discrete heating / invariant descriptor / thermal management

Cite this article

Download citation ▾
Thiago ANTONINI ALVES, Paulo H. D. SANTOS, Murilo A. BARBUR. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow. Front. Mech. Eng., 2015, 10(3): 263‒276 https://doi.org/10.1007/s11465-015-0345-y

References

[1]
Ortega A. Conjugate Heat Transfer in Forced Air Cooling of Electronic Components. In Kim S J, Lee S W, eds. Air Cooling Technology for Electronic Equipment. Boca Raton: CRC Press, 1996, 103–171
[2]
Nakayama W. Forced convective/conductive conjugate heat transfer in microelectronic equipment. Annual Review of Heat Transfer, 1997, 8(8): 1–45
CrossRef Google scholar
[3]
Moffat R J. What’s new in convective heat transfer? International Journal of Heat and Fluid Flow, 1998, 19(2): 90–101
CrossRef Google scholar
[4]
Arvizu D E, Moffat R J. The use of superposition in calculating cooling requirements for circuit-board-mounted electronic components. In: Proceeding of 32nd Electronic Components Conference. San Diego, 1982, 133–144
[5]
Arvizu D E, Ortega A, Moffat R J. Cooling Electronic Components: Forced Convection Experiments with an Air-Cooled Array. In: Oktay S, Moffat R J, eds. Electronics Cooling. New York: ASME, 1985
[6]
Moffat R J, Anderson A M. Applying heat transfer coefficient data to electronics cooling. Journal of Heat Transfer, 1990, 112(4): 882–890
CrossRef Google scholar
[7]
Anderson A M, Moffat R J. The adiabatic heat transfer coefficient and the superposition kernel function: Part 1—Data for arrays of flatpacks for different flow conditions. Journal of Electronic Packaging, 1992, 114(1): 14–21
CrossRef Google scholar
[8]
Anderson A M, Moffat R J. The adiabatic heat transfer coefficient and the superposition kernel function: Part 2—Modeling flatpack data as a function of channel turbulence. Journal of Electronic Packaging, 1992, 114(1): 22–28
CrossRef Google scholar
[9]
Moffat R J. hadiabatic and umax⁡′. Journal of Electronic Packaging, 2004, 126(4): 501–509
CrossRef Google scholar
[10]
Eckert E R G, Drake R M. Analysis of Heat and Mass Transfer. New York: McGraw-Hill, 1972
[11]
Sparrow E M, Ramsey J W, Altemani C A C. Experiments on in-line pin fin arrays and performance comparisons with staggered arrays. Journal of Heat Transfer, 1980, 102(1): 44–50
CrossRef Google scholar
[12]
Garimella S V, Eibeck P A. Enhancement of single phase convective heat transfer from protruding elements using vortex generators. International Journal of Heat and Mass Transfer, 1991, 34(9): 2431–2433
CrossRef Google scholar
[13]
Kang S S. The thermal wake function for rectangular electronic modules. Journal of Electronic Packaging, 1994, 116(1): 55–59
CrossRef Google scholar
[14]
Molki M, Faghri M, Ozbay O. A correlation for heat transfer and wake effect in the entrance region of an in-line array of rectangular blocks simulation electronic components. Journal of Heat Transfer, 1995, 117(1): 40–46
CrossRef Google scholar
[15]
Nakayama W, Park S H. Conjugate heat transfer from a single surface-mounted block to forced convective air flow in a channel. Journal of Heat Transfer, 1996, 118(2): 301–309
CrossRef Google scholar
[16]
Wirtz R A. Forced Air Cooling of Low-Profile Package Arrays. In: Kim S J, Lee S W, eds. Air Cooling Technology for Electronic Equipment. Boca Raton: CRC Press, 1996, 81–101
[17]
Molki R J, Faghri M. Temperature of in-line array of electronic components simulated by rectangular blocks. Electronics Cooling, 2000, 6: 26–32
[18]
Rhee J, Moffat R J. Experimental estimate of the continuous one-dimensional kernel function in a rectangular duct with forced convection. Journal of Heat Transfer, 2006, 128(8): 811–818
CrossRef Google scholar
[19]
Alves T A, Altemani C A C. Convective cooling of three discrete heat sources in channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, 30(3): 245–252
CrossRef Google scholar
[20]
Alves T A, Altemani C A C. Conjugate cooling of a discrete heater in laminar channel flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(3): 278–286
CrossRef Google scholar
[21]
Alves T A, Altemani C A C. Conjugate cooling of a protruding heater in a channel with distinct flow constraints. Global Journal of Researches in Engineering Mechanical and Mechanics Engineering, 2013, 13(11): 9–25
[22]
Hacker J M, Eaton J K. Measurements of heat transfer in separated and reattaching flow with spatially varying thermal boundary conditions. International Journal of Heat and Fluid Flow, 1997, 18(1): 131–141
CrossRef Google scholar
[23]
Batchelder K A, Eaton J K. Practical experience with the discrete Green’s function approach to convective heat transfer. Journal of Heat Transfer, 2001, 123(1): 70–76
CrossRef Google scholar
[24]
Mukerji D, Eaton J K, Moffat R J. Convective heat transfer near one-dimensional and two-dimensional wall temperature steps. Journal of Heat Transfer, 2004, 126(2): 202–210
CrossRef Google scholar
[25]
Mukerji D, Eaton J K. Discrete Green’s function measurements in a single passage turbine model. Journal of Heat Transfer, 2005, 127(4): 366–377
CrossRef Google scholar
[26]
Booten C, Eaton J K. Discrete Green’s function measurements in internal flows. Journal of Heat Transfer, 2005, 127(7): 692–698
CrossRef Google scholar
[27]
Booten C, Eaton J K. Discrete Green’s function measurements in a serpentine cooling passage. Journal of Heat Transfer, 2007, 129(12): 1686–1696
CrossRef Google scholar
[28]
Davalath J, Bayazitoglu Y. Forced convection cooling across rectangular blocks. Journal of Heat Transfer, 1987, 109(2): 321–328
CrossRef Google scholar
[29]
Anderson A M. Decoupling convective and conductive heat transfer using the adiabatic heat transfer coefficient. Journal of Electronic Packaging, 1994, 116(4): 310–316
CrossRef Google scholar
[30]
Alves T A, Altemani C A C. An invariant descriptor for heaters temperature prediction in conjugate cooling. International Journal of Thermal Sciences, 2012, 58: 92–101
CrossRef Google scholar
[31]
Bergman L, Lavine A S, Incropera F P, . Fundamentals of Heat and Mass Transfer. New Jersey: John Wiley & Sons, 2012
[32]
Morris G K, Garimella S V. Thermal wake downstream of a three-dimensional obstacle. Experimental Thermal and Fluid Science, 1996, 12(1): 65–74
CrossRef Google scholar
[33]
Bar-Cohen A, Watwe A A, Prasher R S. Heat Transfer in Electronic Equipment. In: Bejan A, Kraus A D, eds. Heat Transfer Handbook. New Jersey: John Wiley & Sons, 2003, 947–1027
[34]
Zeng Y, Vafai K. An investigation of convective cooling of an array of channel-mounted obstacles. Numerical Heat Transfer, 2009, 55(11): 967–982
CrossRef Google scholar
[35]
Ramadhyani S, Moffatt D F, Incropera F P. Conjugate heat transfer from small isothermal heat sources embedded in a large substrate. International Journal of Heat and Mass Transfer, 1985, 28(10): 1945–1952
CrossRef Google scholar
[36]
Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Corporation, 1980
[37]
Leung C W, Chen S, Chan T L. Numerical simulation of laminar forced convection in an air-cooled horizontal printed circuit board assembly. Numerical Heat Transfer, 2000, 37(4): 373–393
CrossRef Google scholar
[38]
Nakamura H, Igarashi T, Tsutsui T. Local heat transfer around a wall-mounted cube in the turbulent boundary layer. International Journal of Heat and Mass Transfer, 2001, 44(18): 3385–3395
CrossRef Google scholar
[39]
Hwang J Y, Yang K S. Numerical study of vortical structures around a wall-mounted cubic obstacle in channel flow. Physics of Fluids, 2004, 16(7): 2382
CrossRef Google scholar
[40]
Huang P C, Yang C F, Hwang J J, . Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. International Journal of Heat and Mass Transfer, 2005, 48(3−4): 647–664
CrossRef Google scholar
[41]
Nakajima M, Yanaoka H, Yoshikawa H, . Numerical simulation of three-dimensional separated flow and heat transfer around staggered surface-mounted rectangular blocks in a channel. Numerical Heat Transfer, 2005, 47(7): 691–708
CrossRef Google scholar
[42]
Yaghoubi M, Velayati E. Undeveloped convective heat transfer from an array of cubes in cross-stream direction. International Journal of Thermal Sciences, 2005, 44(8): 756–765
CrossRef Google scholar
[43]
Premachandran B, Balaji C. Conjugate mixed convection with surface radiation from a horizontal channel with protruding heat sources. International Journal of Heat and Mass Transfer, 2006, 49(19−20): 3568–3582
CrossRef Google scholar
[44]
ANSYS/FluentTM. Solving a conjugate heat transfer problem using ANSYS/FluentTM. 2011, Tutorial: 1–30
[45]
Barbur M A. Numerical Validation of the Invariant Descriptor of Conjugate Forced Convection-Conduction Cooling of Protruding 3D Heaters in Channel Flow, Final Course Assignment. Ponta Grossa: Federal University of Technology-Paraná, Brazil, 2014, 81 (in Portuguese)

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq), a foundation linked to the Ministry of Science and Technology and Innovation (MCTI), and the Federal University of Technology-Paraná (UTFPR) for the financial support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3022 KB)

Accesses

Citations

Detail

Sections
Recommended

/