Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications

J. AGUIRREBEITIA, R. AVILÉS, I. FERNÁNDEZ, M. ABASOLO

PDF(1016 KB)
PDF(1016 KB)
Front. Mech. Eng. ›› 2013, Vol. 8 ›› Issue (1) : 17-32. DOI: 10.1007/s11465-013-0364-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications

Author information +
History +

Abstract

This paper presents the kinematical features of an inversion of the double linked fourbar for morphing wing purposes. The structure of the mechanism is obtained using structural synthesis concepts, from an initial conceptual schematic. Then, kinematic characteristics as instant center of rotation, lock positions, dead point positions and uncertainty positions are derived for this mechanism in order to face the last step, the dimensional synthesis; in this sense, two kinds of dimensional synthesis are arranged to guide the wing along two positions, and to fulfill with the second one some aerodynamic and minimum actuation energy related issues.

Keywords

morphing wing / structural synthesis / dimensional synthesis / geometrical kinematics

Cite this article

Download citation ▾
J. AGUIRREBEITIA, R. AVILÉS, I. FERNÁNDEZ, M. ABASOLO. Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications. Front Mech Eng, 2013, 8(1): 17‒32 https://doi.org/10.1007/s11465-013-0364-5

References

[1]
Rodriguez A. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007
[2]
Sofla A Y N, Meguid S A, Tan K T, Yeo W K. Shape morphing of aircraft wing: Status and challenges. Materials & Design, 2010, 31(3): 1284-1292
CrossRef Google scholar
[3]
Berton B.Shape Memory Alloys Application: Trailing Edge Shape Control. NATO OTAN RTO-MP-AVT-141, 2006
[4]
Yu Y, Li X, Zhang W, Leng J. Investigation on adaptive wing structure based on shape memory polymer composite hinge. International conference on smart materials and nanotechnology in engineering, China. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6423: 64231D-5, 64231D-7
CrossRef Google scholar
[5]
Wang D P, Bartley-Cho J D, Martin C A, Hallam B. Development of high-rate, large deflection, hingeless trailing edge control surface for the smart wing wind tunnel model. Smart structures and materials 2001: Industrial and commercial applications of smart structures technologies. In: Proceedings of SPIE, 2001
[6]
Vos R, Barrett R, de Breuker R, Tiso P. Post-buckled precompressed elements: A new class of control actuators for morphing wing UAVs. Smart Materials and Structures, 2007, 16(3): 919-926
CrossRef Google scholar
[7]
Lim S M, Lee S, Park H C, Yoon K J, Goo N S. Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA). Smart Materials and Structures, 2005, 14(4): 496-503
CrossRef Google scholar
[8]
Paradies R, Ciresa P. Active wing design with integrated flight control using piezoelectric macro fiber composites. Smart Materials and Structures, 2009, 18(3): 035010
CrossRef Google scholar
[9]
Mattioni F, Weaver P M, Potter K D, Friswell M I. The application of thermally induced multistable composites to morphing aircraft structures. Industrial and commercial applications of smart structures technologies. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 6930: 693012-1, 693012-11
CrossRef Google scholar
[10]
Diaconu C G, Weaver P M, Mattioni F. Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin-walled Structures, 2008, 46(6): 689-701
CrossRef Google scholar
[11]
Ding H, Zhao J, Huang Z. Unified structural synthesis of planar simple and multiple joint kinematic chains. Mechanism and Machine Theory, 2010, 45(4): 555-568
CrossRef Google scholar
[12]
Sunkari R P, Schmidt L C. Structural synthesis of planar kinematic chains by adapting a Mckay-type algorithm. Mechanism and Machine Theory, 2006, 41(9): 1021-1030
CrossRef Google scholar
[13]
Butcher E A, Hartman C. Efficient enumeration and hierarchical classification of planar simple-jointed kinematic chains: application to 12- and 14-bar single degree-of-freedom chains. Mechanism and Machine Theory, 2005, 40(9): 1030-1050
CrossRef Google scholar
[14]
Yang T L. Topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms, Part I: Theory. American Society of Mechanical Engineers, Design Engineering Division, 1988
[15]
Manolescu N I. A method based on Baranov trusses and using graph theory to find the set of planar jointed kinematic chains and mechanisms. Mechanism and Machine Theory, 1973, 8(1): 3-22
CrossRef Google scholar
[16]
Hsieh W H. Kinematic synthesis of cam-controlled planetary gear trains. Mechanism and Machine Theory, 2009, 44(5): 873-895
CrossRef Google scholar
[17]
Kim J U, Kwak B M. Application of edge permutation group to structural synthesis of epicyclic gear trains. Mechanism and Machine Theory, 1990, 25(5): 563-574
CrossRef Google scholar
[18]
Fernandez de Bustos I, Agirrebeitia J, Avilés R, Ajuria G. Aguirrebeitia, J., Avilés, R., Ajuria, G. Second order analysis of the mobility of kinematic loops via acceleration compatibility analysis. Mechanism and Machine Theory, 2009, 44(10): 1923-1937
CrossRef Google scholar
[19]
Dijscksman E A. Motion Geometry of Mechanisms. Cambridge: Cambridge University Press, 1976
[20]
Hernandez A. Cinematica de Mecanismos. Analisis y diseño. Editorial Síntesis. 2004
[21]
Hunt K H. Kinematic Geometry of Mechanisms. Oxford: Clarendon Press, 1978
[22]
Shigley J E, Uicker J J. Theory of Machines and Mechanisms, USA: McGraw Hill, 1980
[23]
Avilés R, Ajuria M B, García de Jalón J. A fairly general method for the optimum synthesis of mechanisms. Mechanism and Machine Theory, 1985, 20(4): 321-328
CrossRef Google scholar
[24]
Vallejo J, Avilés R, Hernández A, Amezua E. Nonlinear optimization of planar linkages for kinematic syntheses. Mechanism and Machine Theory, 1995, 30(4): 501-518
CrossRef Google scholar
[25]
Avilés R, Vallejo J, Ajuria G, Agirrebeitia J. Second-order methods for the optimum synthesis of multibody systems. Structural and Multidisciplinary Optimization, 2000, 19(3): 192-203
CrossRef Google scholar
[26]
Avilés R, Vallejo J, Fernandez de Bustos I, Agirrebeitia J, Ajuria G. Optimum synthesis of planar linkages using a strain-energy error function under geometric constraints. Mechanism and Machine Theory, 2010, 45(1): 65-79
CrossRef Google scholar
[27]
Holland J H. Adaptation in Natural and Artificial Systems. Cambridge: The MIT Press, 1994
[28]
Avilés R. Introducción a los algoritmos genéticos con aplicaciones en ingeniería mecánica. Escuela Técnica Superior de Ingenieros de Bilbao, Spain, 1996
[29]
Fernández de Bustos I, Agirrebeitia J, Avilés R, Angulo C. Kinematical synthesis of 1-DOF mechanisms using finite elements and genetic algorithms. Finite Elements in Analysis and Design, 2005, 41(15): 1441-1463
CrossRef Google scholar
[30]
Lasdon L S, Waren A D, Jain A, Ratner M. Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software, 1978, 4(1): 34-50
CrossRef Google scholar

Acknowledgements

The authors wish to acknowledge the financial support received from the Department of Research and Universities of the Basque Government and the Ministry of Science and Innovation of Spain, trough the research project reference DPI2009-07900 “Methods for the Analysis and Design of Variable Geometry Trusses in Morphing Aircraft Applications”.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1016 KB)

Accesses

Citations

Detail

Sections
Recommended

/