Patterned wafer bonding using ultraviolet adhesive

Rui ZHUO , Guanglan LIAO , Wenliang LIU , Lei NIE , Tielin SHI

Front. Mech. Eng. ›› 2011, Vol. 6 ›› Issue (2) : 214 -218.

PDF (250KB)
Front. Mech. Eng. ›› 2011, Vol. 6 ›› Issue (2) : 214 -218. DOI: 10.1007/s11465-011-0130-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Patterned wafer bonding using ultraviolet adhesive

Author information +
History +
PDF (250KB)

Abstract

The process of patterned wafer bonding using ultraviolet (UV) adhesive as the intermediate layer was studied. By presetting the UV adhesive guide-layer, controlling the thickness of the intermediate layer (1– 1.5 μm), appropriate pre-drying temperature (60°C), and predrying time (6 min), we obtained the intermediate layer bonding of patterned quartz/quartz. Experimental results indicate that patterned wafer bonding using UV adhesive is achieved under room temperature. The process also has advantages of easy operation, low cost, and no plugging or leakage in the patterned area after bonding. Using the process, a microfluidic chip for red blood cell counting was designed and fabricated. Patterned wafer bonding using UV adhesive will have great potential in the fabrication of microfluidic chips.

Keywords

ultraviolet (UV) adhesive / intermediate layer / patterned wafer bonding

Cite this article

Download citation ▾
Rui ZHUO, Guanglan LIAO, Wenliang LIU, Lei NIE, Tielin SHI. Patterned wafer bonding using ultraviolet adhesive. Front. Mech. Eng., 2011, 6(2): 214-218 DOI:10.1007/s11465-011-0130-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Inomata N, Maruyama H, Kato T, Arai F. Microfluidic chip with world–to–chip interface for temperature detection in micro–nanoscale. International Symposium on Micro–Nano Mechatronics and Human Science (MHS), 2009

[2]

Marko V, Sabine W, Michael M, Iris B, Thomas G, Holger S, Ernst-Bernhard K, Gabi G. Development of a novel, low–viscosity UV–curable polymer system for UV–nanoimprint lithography. Microelectronic Engineering, 2007, 84(5-8): 984–988

[3]

Cakmak E, Dragoi V, Capsuto E, McEwen C, Pabo E. Adhesive wafer bonding with photosensitive polymers for MEMS fabrication. Microsystem Technologies, 2010, 16(5): 799–808

[4]

Lin C H, LeeG B. Micromachined flow cytometers with embedded etched optic fibers for optical detection. Journal of Micromechanics and Microengineering, 2003, (13): 447–453

[5]

Rogers T, Aitken N. Wafer bonding processes for the manufacture of microsystems. In: Proc ASME – Int Conf Integr Commer Micro Nanosystems. MicroNano, 2008, 687–692

[6]

Pemg B, Wu C, Shen Y, Lin Y. Microfluidic chip fabrication using hot embossing and thermal bonding of cop. Polymers for Advanced Technologies, 2010, 21(7): 457–466

[7]

Huang Z L, Sanders J C, Dunsmor C, Ahmadzadeh H, Landers J P. A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis, 2001, 22(18): 3924–3929

[8]

Huang Z L, Munro N, Hühmer A F R, Landers J P. Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips. Analytical Chemistry, 1999, 71(23): 5309–5314

[9]

Chiem N, Lockyear–Shultz L, Anderson P. Room temperature bonding of micromachined glass devices for capillary electrophoresis. Sensors and Actuators. B, Chemical, 2000, 63(3): 147–152

[10]

Schlautmann S, Besselink G A J, Prabhu R, Schasfoort R B M. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers. Journal of Micromechanics and Microengineering, 2003, 13(4): S81–S84

[11]

Schlautmann S, Wensink H, Schasfoort R B M, Elwenspoek M, Berg A V D. Powder–blasting technology as an alternative tool for micro-fabrication of CE–chips with integrated conductivity sensors. Micromech Microeng, 2001, 11(4): 386–389

[12]

Kopf-Sill A R. Commercializing lab-on-chip technology Proc Micro Total Analysis. μTAS Enschede, The Netherlands, 2000: 233–238

[13]

Niklaus F, Enoksson P, Kälvesten E, Stemme G. Void-free full wafer adhesive bonding. 13th Int Workshop on Micro Electro Mechanical Systems. MEMS, Miyazaki, Japan, 2000: 247–252

[14]

Ho L F, Chollet F. Standardized bio–opto–fluidic chip technology using channel only process. Microelectronic Engineering, 2008, 85(5-6): 1306–1310

[15]

Maloney J, Sridharan S, Gardner R, Mason K. Effect of process variables on glass frit wafer bonding in MEMS wafer level packaging. Materials Research Society Symposium Proceedings, 2009, 1139: 133–139

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (250KB)

2528

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/