Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics

Shihui XIE, Kongjun ZHU, Jinhao QIU, Hua GUO

PDF(211 KB)
PDF(211 KB)
Front. Mech. Eng. ›› 2009, Vol. 4 ›› Issue (3) : 345-349. DOI: 10.1007/s11465-009-0050-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics

Author information +
History +

Abstract

Lead-free piezoelectric ceramics (1-x)NaNbO3-xBaTiO3 have been fabricated by a traditional ceramic sintering technique. The effects of BaTiO3 (BT) synthesized by hydrothermal method on crystal structure, density, dielectric, piezoelectric, and electromechanical properties were investigated. Results show that the phase structure transforms from the orthorhombic phase to the tetragonal phase with the increase of the content of BT, and the two phases co-exist when 0.08<x≤0.10. However, the optimum composition for (1-x)NaNbO3-xBaTiO3 ceramics is 0.90NaNbO3-0.10BaTiO3. The 0.90NaNbO3-0.10BaTiO3 ceramics sintered at 1250°C have higher properties: piezoelectric constant d33 of 120 pC/N, dielectric constant ϵr of 718, planar electromechanical coupling factor kp of 24%, planar frequency Nd of 3 MHz·mm, and the mechanical quality factor Qm of 138, respectively. The results show that the (1-x)NaNbO3-xBaTiO3 ceramics is one of the promising lead-free materials for high-frequency applications.

Keywords

Lead-free piezoelectric ceramics / NaNbO3-BaTiO3 / piezoelectricity / ceramics / crystal structure / microstructure

Cite this article

Download citation ▾
Shihui XIE, Kongjun ZHU, Jinhao QIU, Hua GUO. Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics. Front Mech Eng Chin, 2009, 4(3): 345‒349 https://doi.org/10.1007/s11465-009-0050-9

References

[1]
Matsubara M, Yamaguchi T. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. J Am Ceram Soc, 2005, 88 (5): 1190-1196
CrossRef Google scholar
[2]
Zhang S J, Xia R. Characterization of lead free (Na0.5K0.5)NbO3-LiSbO3 piezoceramic. Solid State Communications, 2007, 141: 675-679
CrossRef Google scholar
[3]
Zhang S J, Xia R. Lead-free piezoelectric ceramics vs. PZT. J. Electroceram, DOI:10.1007/s10832-007-9056-z, 2007
CrossRef Google scholar
[4]
Ahn C W, Song H C. Effect of MnO2 on the piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics. Japanese Journal of Applied Physics, 2005, 44: 1361-1364
CrossRef Google scholar
[5]
Zhi Y, Chen A. Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. Journal of Applied Physics, 2002, 92(3): 1489-1493
CrossRef Google scholar
[6]
Lin D, Kowk K W. Structure and electrical properties of (Na0.5K0.5)NbO3-LiSbO3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2007, 101: 074111–(1–6)
[7]
Chang R C, Chu S Y. The effect of sintering temperature on the properties of (Na0.5K0.5)NbO3-CaTiO3 based lead-free piezoelectric ceramics. Sensors and Actuators A, 2007, 138: 355-360
CrossRef Google scholar
[8]
Du H L, Tang F S. Influence of sintering temperature on piezoelectric Properties of (Na0.5K0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Materials Research Bulletin, 2007, 42: 1594-1601
CrossRef Google scholar
[9]
Hagh N M, Jadidian B. Property-processing Relationship in Lead-Free (K,Na,Li)NbO3-solid solution system. J Electroceram, 2007, 18: 339-346
CrossRef Google scholar
[10]
Satio Y, Takao H. Lead-Free Piezoceramics. Nature, 2004, 432(4): 84-87
[11]
Matsubara M, Yamaguchi T. Synthesis and characterization of (Na0.5K0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10O29. Japanese Journal of Applied Physics, 2005, 44(9) : 6618-6623
CrossRef Google scholar
[12]
Guo Y P, Kakimoto K I. (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Materials Letters, 2005, 59: 241-244
CrossRef Google scholar
[13]
Hollenstein E, Davis M. Piezoelectric properties of Li- and Ta-modified (Na0.5K0.5)NbO3 ceramics. Applied Physics Letters, 2005, 87: 182905–(1–3)
[14]
Guo Y P, Kakimoto K. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Communications, 2004, 129: 279-284
CrossRef Google scholar
[15]
Chang Y F, Yang Z P. Dielectric and piezoelectric properties of Alkaline-earth Titanate doped (Na0.5K0.5)NbO3 ceramics. Materials Letters, 2007, 61: 785-789
CrossRef Google scholar
[16]
Jiao G C, Fan H Q. Structure and piezoelectric properties of Cu-doped Potassium Sodium Tantalite Niobate ceramics. Materials Letters, 2007, 61: 4185-4187
CrossRef Google scholar
[17]
Wang R, Xie R J. Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (K,Na)NbO3-ATiO3 solid solution. J Electroceram, DOI:10.1007/s10832-007-9136-0, 2007
CrossRef Google scholar
[18]
Zeng J T, Kwok K W. Ferroelectric and Piezoelectric Properties of Na1-xBaxNb1-xTixO3 Ceramics. J Am Ceram Soc, 2006 , 89: 2828-2832
[19]
Aoyagi R, Matsuoka T. Piezoelectric properties of NaNbO3-BaTiO3 ceramics. In: Sixteenth IEEE International Symposium. Applications of Ferroelectrics, ISAF, 2007, 677-678
[20]
Park S H, Ahn C W. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): 1072-1074
CrossRef Google scholar

Acknowledgements

The authors would like to thank the financial support from the Fostering Fund of the Ministry of Education (No. 707031) and the National 863 Foundation Program (No. 2007AA03Z104).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(211 KB)

Accesses

Citations

Detail

Sections
Recommended

/