Optimal localization of complex surfaces in CAD-based inspection

XU Jinting1, LIU Weijun1, SUN Yuwen2

PDF(222 KB)
PDF(222 KB)
Front. Mech. Eng. ›› 2008, Vol. 3 ›› Issue (4) : 426-433. DOI: 10.1007/s11465-008-0068-4

Optimal localization of complex surfaces in CAD-based inspection

  • XU Jinting1, LIU Weijun1, SUN Yuwen2
Author information +
History +

Abstract

Complex surface inspection requires the optimal localization of the measured surface related to the design surface so that the two surfaces can be compared in a common coordinate frame. This paper presents a new technique for solving the localization problem. The basic approach consists of two steps: 1) rough localization of the measured points to the design surface based on curvature features, which can produce a good initial estimate for the optimal localization; 2) fine localization based on the least-square principle so that the deviation between the measured surface and the design surface is minimized. To efficiently compute the closest points on the design surface of the measured points, a novel method is proposed. Since this approach does not involve an iterative process of solving non-linear equations for the closest points, it is more convenient and robust. The typical complex surface is used to test the developed algorithm. Analysis and comparison of experimental results demonstrate the validity and applicability of the algorithm.

Cite this article

Download citation ▾
XU Jinting, LIU Weijun, SUN Yuwen. Optimal localization of complex surfaces in CAD-based inspection. Front. Mech. Eng., 2008, 3(4): 426‒433 https://doi.org/10.1007/s11465-008-0068-4

References

1. Besl P J, McKay N D . A method for registrationof 3D shapes. IEEE Transaction on PatternAnalysis Machine Intelligence, 1992,14(2): 239–256. doi:10.1109/34.121791
2. Yan S J, Zhou Y F, Peng F Y, et al.. Research on Localization of the workpieces withlarge sculptured surface. Chinese Journalof Mechanical Engineering, 2003, 14(9): 737–740 (in Chinese)
3. Fan K C, Tsai T H . Optimal shape error analysisof the matching image for a free-form surface. Robotics and Computer-integrated Manufacturing, 2001, 17: 215–222. doi:10.1016/S0736-5845(00)00029-6
4. Sharp G C, Lee S W, Wehe D K . ICP registration using invariant features. IEEE Transaction on Pattern Analysis Machine Intelligence, 2002, 24(1): 90–102. doi:10.1109/34.982886
5. Greenspan M, Yurick M . Approximate K-D tree searchfor efficient ICP. In: Proceedings of the4th IEEE International Conference on Recent Advances in 3D DigitalImaging and Modeling, 2003, 442–448
6. Kaneko S, Kondo T, Miyamoto A . Robust matching of 3D contours using iterative closestpoint algorithm improved by M-estimation. Pattern Recognition, 2003, 36(9): 2041–2047. doi:10.1016/S0031-3203(03)00050-5
7. Liu Y H . Improving ICP witheasy implementation for free-form surface matching. Pattern Recognition, 2004, 39(2): 211–226. doi:10.1016/S0031-3203(03)00239-5
8. Menq C H, Yau H T, Lai G Y . Automated precision measure of surface profile in CAD-directedinspection. IEEE Transactions on Roboticsand Automation, 1992, 8(2): 268–278. doi:10.1109/70.134279
9. Yau H T, Menq C H . A unified least-squares approachto the evaluation of geometric errors using discrete measurement data. International Journal of Machine Tools and Manufacture, 1996, 36(11): 1269–1290. doi:10.1016/0890-6955(95)00075-5
10. Huang X, Gu P, Zernicke R . Localization and comparison of two free-form surfaces. Computer-aided design, 1996, 28(12): 1017–1022. doi:10.1016/0010-4485(96)00011-5
11. Li Z X, Gou J B, Chu Y X . Geometric algorithms for workpiece localization. IEEE Transactions on Robotics and Automation, 1998, 14(6): 864–878. doi:10.1109/70.736771
12. Zhu L M, Xiong Z H, Xiong Y L . A distance function based approach for localization andprofile error evaluation of complex surface. Transaction of ASME, Journal of manufacturing Science and Engineering, 2004, 126(3): 542–554. doi:10.1115/1.1763186
13. Li Y D, Gu P H . Free-form surface inspectiontechniques state of the art review. Computer-AidedDesign, 2004, 36(13): 1395–1417. doi:10.1016/j.cad.2004.02.009
14. Chua C S, Jarvis R . 3D free-form surface registrationand object recognition. International Journalof Computer Vision, 1996, 17(1): 77–99. doi:10.1007/BF00127819
15. Ko K H, Maekawa T, Patrikalakis N M, et al.. Shape intrinsic properties for free-form objectmatching. Journal of Computing and InformationScience in Engineering, 2003, 3(4): 325–333. doi:10.1115/1.1633277
16. Ko K H, Maekawa T, Patrikalakis N M . An algorithm for optimal free-form object matching. Computer-Aided Design, 2003, 35(10): 913–923. doi:10.1016/S0010-4485(02)00205-1
17. Li Y D, Gu P H . Inspection of free-form shapedparts. Robotics and Computer-IntegratedManufacturing, 2005, 21(4): 421–430. doi:10.1016/j.rcim.2004.11.015
18. Ma L Y, Hewitt W T . Point inversion and projectionfor NURBS curve and surface: control polygon approach. Computer Aided Geometric Design, 2003, 20(2): 79–99. doi:10.1016/S0167-8396(03)00021-9
19. Hu S M, Wallner J . A second order algorithmfor orthogonal projection onto curves and surfaces. Computer Aided Geometric Design, 2005, 22(3): 251–260. doi:10.1016/j.cagd.2004.12.001
20. Piegl L, Tiller W . Parameterization for surfacefitting in reverse engineering. Computer-AidedDesign, 2001, 33(8): 593–603. doi:10.1016/S0010-4485(00)00103-2
21. Xu J T, Liu W J, Sun Y W . Algorithm for free-form surface matching based on curvatures. Journal of Computer-Aided Design and Computer Graphic, 2007, 19(2): 193–197 (in Chinese)
22. Berchtold J, Bowyer A . Robust arithmetic for multivariateBernstein-form polynomials. Computer-AidedDesign, 2000, 32(11): 681–689. doi:10.1016/S0010-4485(00)00056-7
23. Shi F Z . CAD& NURBS. Beijing: Beihang University Press, 1994 (in Chinese)
AI Summary AI Mindmap
PDF(222 KB)

Accesses

Citations

Detail

Sections
Recommended

/