The evolutionary tolerance design strategy and its characteristics are studied on the basis of automation technology in the product structure design. To guarantee a successful transformation from the functional requirement to geometry constraints between parts, and finally to dimension constraints, a functional tolerance design theory in the process of product growth design is put forward. A mathematical model with a correlated sensitivity function between cost and the tolerance is created, in which the design cost, the manufacturing cost, the usage cost, and the depreciation cost of the product are regarded as control constraints of the tolerance allocation. Considering these costs, a multifactor-cost function to express quality loss of the product is applied into the model. In the mathematical model, the minimum cost is used as the objective function; a reasonable process capability index, the assembly function, and assembly quality are taken as the constraints; and depreciation cost in the objective function is expressed as the discount rate terminology in economics. Thus, allocation of the dimension tolerance as the function and cost over the whole lifetime of the product is realized. Finally, a design example is used to demonstrate the successful application of the proposed functional tolerance theory in the incremental growth design of the product.
YANG Bo, ZE Xiangbo, YANG Tao.
Functional tolerance theory in incremental growth design. Front. Mech. Eng., 2007, 2(3): 336‒343 https://doi.org/10.1007/s11465-007-0059-x
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.