Dec 2019, Volume 13 Issue 6

Cover illustration

  • Scanning electron micrograph of stereociliary bundles of cochlear hair cells in Tprn-null mice at the age of 2 months. High-resolution SEM image showed the degeneration and loss of stereociliary bundles in the outer hair cells (three rows) and relatively intact stereociliary bundles in the inner hair cells (one row). (Courtesy of Dr. Jiangang Gao. See pages 690?704 by Yuqin Men et al. for more information.)

  • Select all
    Mara Simopoulou, Konstantinos Sfakianoudis, Petroula Tsioulou, Anna Rapani, Polina Giannelou, Nikolaos Kiriakopoulos, Agni Pantou, Nikolaos Vlahos, George Anifandis, Stamatis Bolaris, Konstantinos Pantos, Michael Koutsilieris

    Assisted reproduction provides a wide spectrum of treatments and strategies addressing infertility. However, distinct groups of infertile patients with unexplained infertility, congenital disorders, and other complex cases pose a challenge in in vitro fertilization (IVF) practices. This special cohort of patients is associated with futile attempts, IVF overuse, and dead ends in management. Cutting edge research on animal models introduced this concept, along with the development of artificial organs with the aim to mimic the respective physiological functions in reproduction. Extrapolation on clinical application leads to the future use of infertility management in humans. To date, the successful clinical application of artificial reproductive organs in humans is not feasible because further animal model studies are required prior to clinical trials. The application of these artificial organs could provide a solution to infertility cases with no other options. This manuscript presents an overview on the current status, future prospects, and considerations on the potential clinical application of artificial ovary, uterus, and gametes in humans. This paper presents how the IVF practice landscape may be shaped and challenged in the future, along with the subsequent concerns in assisted reproductive treatments.

    Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang

    Esophageal cancer-related gene-4 (Ecrg4) is cloned from the normal epithelium of the esophagus. It is constitutively expressed in quiescent epithelial cells and downregulated during tumorigenesis, and Ecrg4 expression levels are inversely correlated with the malignant phenotype of tumor cells, validating that Ecrg4 is a real tumor suppressor gene. Unlike other tumor suppressor genes that usually encode membrane or intracellular proteins, Ecrg4 encodes a 148-amino acid pre-pro-peptide that is tethered on the cell surface in epithelial cells, specialized epithelial cells, and human leukocytes, where it can be processed tissue dependently into several small peptides upon cell activation. Ecrg4 is expressed in a wide variety of other cells/tissues, including cardiomyocytes and conduction system of the heart,, the glomus cells of the carotid body, adrenal glands, choroid plexus, and leukocytes among others, where it exerts distinct functions, such as promoting/suppressing inflammation, inducing neuron senescence, stimulating the hypothalamus--pituitary--adrenal axis, maintaining the stemness of stem cells, participating in the rhythm and rate control of the heart, and possibly gauging the responsiveness of the cardiovascular system (CVS) to hypoxia, in addition to tumor suppression. Here, we briefly review the latest discoveries on Ecrg4 and its underlying molecular mechanisms as a tumor suppressor and focus on the emerging roles of Ecrg4 in the CVS.

    Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li

    NES1 gene is thought to be a tumor-suppressor gene. Our previous study found that overexpression of NES1 gene in PC3 cell line could slow down the tumor proliferation rate, associated with a mild decrease in BCL-2 expression. The BCL-2 decrease could increase the sensitivity of radiotherapy to tumors. Thus, we supposed to have an “enhanced firepower” effect by combining overexpressed NES1 gene therapy and 131I radiation therapy uptake by overexpressed hNIS protein. We found a weak endogenous expression of hNIS protein in PC3 cells and demonstrated that the low expression of hNIS protein in PC3 cells might be the reason for the low iodine uptake. By overexpressing hNIS in PC3, the radioactive iodine uptake ability was significantly increased. Results of in vitro and in vivo tumor proliferation experiments and 18F-fluorothymidine (18F-FLT) micro-positron emission tomography/computed tomography (micro-PET/CT) imaging showed that the combined NES1 gene therapy and 131I radiation therapy mediated by overexpressed hNIS protein had the best tumor proliferative inhibition effect. Immunohistochemistry showed an obvious decrease of Ki-67 expression and the lowest BCL-2 expression. These data suggest that via inhibition of BCL-2 expression, overexpressed NES1 might enhance the effect of radiation therapy of 131I uptake in hNIS overexpressed PC3 cells.

    Tung Huynh, Ke-Qin Hu

    Direct acting antiviral (DAA) treatments may reduce the elevated α fetoprotein (AFP), but data on how these treatments affect elevated AFP in patients with chronic hepatitis C (CHC) remain insufficient. In the present study, the frequency of baseline AFP elevations and their related factors, AFP dynamics during and after DAA treatment, and factors associated with AFP reduction was assessed. This retrospective study included 141 patients with CHC without hepatocellular carcinoma who received DAA and achieved sustained virological response. The details are as follows: mean post-treatment follow-up was 99 weeks (12–213); mean age, 57.8 years old; 52%, males; 79%, genotype (GT) 1; and 47%, cirrhosis. Pre-treatment AFP elevation (>5.5 ng/mL) was seen in 48.2% patients. On multivariate analysis, baseline AFP>5.5 was associated with the presence of cirrhosis (P=0.001), co-existing non-alcoholic steatohepatitis (NASH) (P = 0.035), and GT 1 (P = 0.029). AFP normalization was seen in 28.2% patients at treatment week 2, in 52% at the end of treatment, and in 73.4% at the end of follow-up. Post-treatment week 24 AFP normalization was associated with the absence of cirrhosis (P = 0.003), Child--Pugh score<6 (P = 0.015), and baseline AFP<10 (P = 0.015). AFP elevation is common in patients with CHC and independently associated with NASH, cirrhosis, and GT 1. DAA treatment resulted in AFP normalization as early as treatment week 2. Post-treatment week 24 AFP normalization is independently associated with the absence of cirrhosis, Child--Pugh score<6, and baseline AFP<10.

    Meng Lv, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Wei Han, Fengrong Wang, Jingzhi Wang, Kaiyan Liu, Xiaojun Huang, Xiaodong Mo

    Chronic graft-versus-host disease (cGVHD) is a major complication following unmanipulated haploidentical hematopoietic stem cell transplantation (haplo-HSCT). We aimed to identify the risk factors for cGVHD in patients who underwent anti-thymocyte globulin-based haplo-HSCT for acute myeloid leukemia (n=280). The diagnosis of cGVHD was in accordance with the National Institutes of Health consensus criteria. A total of 169 patients suffered from cGVHD. The patients who had 3 loci mismatched had a higher 8-year incidence of cGVHD (total, 66.0% vs. 53.7%, P=0.031; moderate to severe, 42.4% vs. 30.1%, P=0.036) than the patients who had 1 to 2 loci mismatched. The patients who had maternal donors had a higher 8-year incidence of moderate to severe cGVHD (49.2% vs. 32.9%, P=0.024) compared with the patients who had other donors. The patients who had grades III to IV acute GVHD (aGVHD) had higher 8-year incidence of cGVHD (total, 88.0% vs. 50.4%, P<0.001; moderate to severe, 68.0% vs. 27.0%, P<0.001) compared with the patients without aGVHD. In multivariate analysis, grades III to IV aGVHD was the only independent risk factor for cGVHD. Thus, further interventions should be considered in patients with severe aGVHD to prevent cGVHD.

    Wenjing Zhang, Caijun Zha, Xiumin Lu, Ruichun Jia, Fei Gao, Qi Sun, Meili Jin, Yanhong Liu

    Anti-β2 glycoprotein I (anti-β2GPI) antibodies are important contributors to the development of thrombosis. Anti-β2GPI antibody complexes with β2GPI are well known to activate monocytes and endothelial cells via the intracellular NF-kB pathway with prothrombotic implications. By contrast, the interaction of anti-β2GPI/β2GPI complexes with platelets has not been extensively studied. The p38 mitogen-activated protein kinase (MAPK) pathway has been recognized to be an important intracellular signaling pathway in the coagulation cascade and an integral component of arterial and venous thrombosis. The present study reveals that levels of anti-β2GPI/β2GPI complexes in sera are positively associated with p38MAPK phosphorylation of platelets in thrombotic patients. Furthermore, SB203580 inhibits anti-β2GPI/β2GPI complex-induced platelet activation. Thrombus formation decreased in p38MAPK/ mice after treatment with anti-β2GPI/β2GPI complexes. In conclusion, p38MAPK may be a treatment target for anti-β2GPI antibody-associated thrombotic events.

    Yuqin Men, Xiujuan Li, Hailong Tu, Aizhen Zhang, Xiaolong Fu, Zhishuo Wang, Yecheng Jin, Congzhe Hou, Tingting Zhang, Sen Zhang, Yichen Zhou, Boqin Li, Jianfeng Li, Xiaoyang Sun, Haibo Wang, Jiangang Gao

    Tprn encodes the taperin protein, which is concentrated in the tapered region of hair cell stereocilia in the inner ear. In humans, TPRN mutations cause autosomal recessive nonsyndromic deafness (DFNB79) by an unknown mechanism. To determine the role of Tprn in hearing, we generated Tprn-null mice by clustered regularly interspaced short palindromic repeat/Cas9 genome-editing technology from a CBA/CaJ background. We observed significant hearing loss and progressive degeneration of stereocilia in the outer hair cells of Tprn-null mice starting from postnatal day 30. Transmission electron microscopy images of stereociliary bundles in the mutant mice showed some stereociliary rootlets with curved shafts. The central cores of the stereociliary rootlets possessed hollow structures with surrounding loose peripheral dense rings. Radixin, a protein expressed at stereocilia tapering, was abnormally dispersed along the stereocilia shafts in Tprn-null mice. The expression levels of radixin and β-actin significantly decreased. We propose that Tprn is critical to the retention of the integrity of the stereociliary rootlet. Loss of Tprn in Tprn-null mice caused the disruption of the stereociliary rootlet, which resulted in damage to stereociliary bundles and hearing impairments. The generated Tprn-null mice are ideal models of human hereditary deafness DFNB79.

    Hui Jiang, Shan Zeng, Wenli Ni, Yan Chen, Wenyan Li

    Wnt and Notch signaling play crucial roles in the determination of the prosensory domain and in the differentiation of hair cells (HCs) and supporting cells during mouse inner ear development; however, the relationship between the two signaling pathways in the mouse cochlea remains largely unknown. Here, we investigated the interactions between Notch and Wnt signaling on the basis of the bidirectional regulation of Notch1 specifically in Wnt-responsive Lgr5+ progenitors during different cochlear development stages. We found that the downregulation of Notch1 in Lgr5+ cells from embryonic day (E) 14.5 to E18.5 can drive the quiescent Lgr5+ cells to re-enter the cell cycle and differentiate into extra HCs, whereas the upregulation of Notch1 expression did not affect the proliferation or differentiation of otic progenitor cells. No effect was observed on the upregulation or downregulation of Notch1 in Lgr5+ cells from E10.5 to E14.5. We concluded that the roles of Notch1 in Wnt-responsive Lgr5+ cells are unidirectional and stage dependent and Notch1 serves as a negative regulator for Lgr5+ progenitor activation during cochlear differentiation. Our findings improved the understanding of the interactions between Notch and Wnt signaling in cochlear development.

    Seo Yeon Baik, Hyunah Kim, So Jung Yang, Tong Min Kim, Seung-Hwan Lee, Jae Hyoung Cho, Hyunyong Lee, Hyeon Woo Yim, Kun-Ho Yoon, Hun-Sung Kim

    Few long-term follow-up studies have compared the changes in renal function according to the type of statin used in Korea. We compared the long-term effects of statin intensity and type on the changes in the glomerular filtration rate (GFR). We extracted data of patients who took statin for the first time. We analyzed whether or not different statins affect the changes in GFR at 3 months after baseline and 4 years after. We included 3678 patients and analyzed the changes in GFR. The GFR decreased by 3.2%±0.4% on average 4 years after the first statin prescription, indicating statistically significant deterioration (from 83.5±0.4 mL/min/1.73 m2 to 79.9±0.4 mL/min/1.73 m2, P<0.001). When comparing the GFR among different statins, significant differences were observed between atorvastatin and fluvastatin (−5.3%±0.7% vs. 1.2%±2.2%, P<0.05) and between atorvastatin and simvastatin (−5.3%±0.7% vs. −0.7%±0.8%, P<0.05). In pitavastatin (odds ratio [OR]=0.64, 95% confidence interval [CI]=0.46–0.87, P<0.005) and simvastatin (OR=0.69, 95% CI=0.53–0.91, P<0.008), the GFR rate that decreased by<60 mL/min/1.73 m2 was significantly lower than that of atorvastatin. Regarding long-term statin intake, GFR changed with the type of statin. This work is the first in Korea to compare each statin in terms of changes in the GFR after the statin prescription.

    Bowen Jiang, Tej D. Azad, Ethan Cottrill, Corinna C. Zygourakis, Alex M. Zhu, Neil Crawford, Nicholas Theodore

    Robotic systems in surgery have developed rapidly. Installations of the da Vinci Surgical System® (Intuitive Surgical, Sunnyvale, CA,, USA), widely used in urological and gynecological procedures, have nearly doubled in the United States from 2010 to 2017. Robotics systems in spine surgery have been adopted more slowly; however, users are enthusiastic about their applications in this subspecialty. Spinal surgery often requires fine manipulation of vital structures that must be accessed via limited surgical corridors and can require repetitive tasks over lengthy periods of time — issues for which robotic assistance is well-positioned to complement human ability. To date, the United States Food and Drug Administration (FDA) has approved 7 robotic systems across 4 companies for use in spinal surgery. The available clinical data evaluating their efficacy have generally demonstrated these systems to be accurate and safe. A critical next step in the broader adoption of surgical robotics in spine surgery is the design and implementation of rigorous comparative studies to interrogate the utility of robotic assistance. Here we discuss current applications of robotics in spine surgery, review robotic systems FDA-approved for use in spine surgery, summarize randomized controlled trials involving robotics in spine surgery, and comment on prospects of robotic-assisted spine surgery.

    Yue Wang, Jinxia Zhang, Yunfan Wang, Shufang Wang, Yu Zhang, Qi Miao, Fei Gao, Huiying He

    GATA binding protein 3 (GATA3) and mismatch repair (MMR) deficiency contribute to the development of urothelial carcinoma. However, the combined expression of GATA3 and microsatellite instability (MSI) in upper tract urothelial carcinoma (UTUC) and its prognostic value have not been investigated. Here, we immunohistochemically stained GATA3 and MMR proteins in 108 UTUC samples. GATA3 was positive in 74 cases, and its expression was significantly lower than in adjacent benign urothelium (P<0.001). Loss of GATA3 expression was statistically associated with adverse clinicopathologic parameters, such as advanced stage, lymphovascular invasion, neural invasion, lymph node metastasis, and extensive necrosis. Cancer-specific survival (CSS, P=0.028) and disease-free survival (DFS, P=0.024) were significantly shorter in patients with GATA3 negative tumors than in patients with GATA3 positive tumors. The absence of MMR proteins was observed in 8.3% of the cases, and focal staining was identified in 13.0%. When using “lax criteria” which resulted in counting cases as negative where MMR staining was in fact focally positive (<5%), we found that GATA3 was inversely associated with MSI (P=0.005). Moreover, GATA3/microsatellite stability (MS) tumors were correlated with advanced pT stage (P<0.001) and poor outcome (P=0.019 for CSS, P=0.016 for DFS) compared with GATA3+/MSI ones. The GATA3/MSI cases had unfavorable clinical outcomes compared with GATA3+/MSI cases (P=0.008 for CSS, P=0.023 for DFS). This finding raises a question as to whether GATA3 interacts with MSI through the TGF-β signaling pathway and regulates UTUC progression.

    Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen

    Hyperuricemia (HUA) is a risk factor for chronic kidney disease (CKD). The relationship between HUA and white blood cell (WBC) count remains unknown. A sampling survey for CKD was conducted in Sanlin community in 2012 and 2014. CKD was defined as proteinuria in at least the microalbuminuric stage or an estimated GFR of 60 mL/(min·1.73 m2). HUA was defined as serum uric acid>420 µmol/L in men and>360 µmol/L in women. This study included 1024 participants. The prevalence of HUA was 17.77%. Patients with HUA were more likely to have higher levels of WBC count, which was positively associated with HUA prevalence. This association was also observed in participants without CKD, diabetes mellitus, hyperlipidemia, or obesity. Multivariate logistic regression analysis showed that WBC count was independently associated with the risk for HUA in male and female participants. Compared with participants without HUA, inflammatory factors such as high-sensitivity C-reactive protein, tumor necrosis factor-α, and interleukin 6 increased in participants with HUA. Hence, WBC count is positively associated with HUA, and this association is independent of conventional risk factors for CKD.