What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations

Mara Simopoulou, Konstantinos Sfakianoudis, Petroula Tsioulou, Anna Rapani, Polina Giannelou, Nikolaos Kiriakopoulos, Agni Pantou, Nikolaos Vlahos, George Anifandis, Stamatis Bolaris, Konstantinos Pantos, Michael Koutsilieris

PDF(527 KB)
PDF(527 KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (6) : 627-638. DOI: 10.1007/s11684-019-0697-5
REVIEW

What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations

Author information +
History +

Abstract

Assisted reproduction provides a wide spectrum of treatments and strategies addressing infertility. However, distinct groups of infertile patients with unexplained infertility, congenital disorders, and other complex cases pose a challenge in in vitro fertilization (IVF) practices. This special cohort of patients is associated with futile attempts, IVF overuse, and dead ends in management. Cutting edge research on animal models introduced this concept, along with the development of artificial organs with the aim to mimic the respective physiological functions in reproduction. Extrapolation on clinical application leads to the future use of infertility management in humans. To date, the successful clinical application of artificial reproductive organs in humans is not feasible because further animal model studies are required prior to clinical trials. The application of these artificial organs could provide a solution to infertility cases with no other options. This manuscript presents an overview on the current status, future prospects, and considerations on the potential clinical application of artificial ovary, uterus, and gametes in humans. This paper presents how the IVF practice landscape may be shaped and challenged in the future, along with the subsequent concerns in assisted reproductive treatments.

Keywords

artificial ovary / artificial uterus / artificial gametes / assisted reproduction / considerations / in vitro fertilization

Cite this article

Download citation ▾
Mara Simopoulou, Konstantinos Sfakianoudis, Petroula Tsioulou, Anna Rapani, Polina Giannelou, Nikolaos Kiriakopoulos, Agni Pantou, Nikolaos Vlahos, George Anifandis, Stamatis Bolaris, Konstantinos Pantos, Michael Koutsilieris. What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations. Front. Med., 2019, 13(6): 627‒638 https://doi.org/10.1007/s11684-019-0697-5

References

[1]
Min JK, Breheny SA, MacLachlan V, Healy DL. What is the most relevant standard of success in assisted reproduction? The singleton, term gestation, live birth rate per cycle initiated: the BESST endpoint for assisted reproduction. Hum Reprod 2004; 19(1): 3–7
CrossRef Pubmed Google scholar
[2]
Wang J, Sauer MV. In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2006; 2(4): 355–364
CrossRef Pubmed Google scholar
[3]
Huang JYJ, Rosenwaks Z. Assisted reproductive techniques. In: Rosenwaks Z, Wassarman PM. Human Fertility: Methods and Protocols. New York, NY: Springer New York, 2014: 171–231
[4]
Audibert C, Glass D. A global perspective on assisted reproductive technology fertility treatment: an 8-country fertility specialist survey. Reprod Biol Endocrinol 2015; 13: 133
CrossRef Google scholar
[5]
Yoo SS. 3D-printed biological organs: medical potential and patenting opportunity. Expert Opin Ther Pat 2015; 25(5): 507–511
CrossRef Pubmed Google scholar
[6]
Kim J, Perez AS, Claflin J, David A, Zhou H, Shikanov A. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice. NPJ Regen Med 2016; 1(1): 16010
CrossRef Pubmed Google scholar
[7]
Podfigurna-Stopa A, Czyzyk A, Grymowicz M, Smolarczyk R, Katulski K, Czajkowski K, Meczekalski B. Premature ovarian insufficiency: the context of long-term effects. J Endocrinol Invest 2016; 39(9): 983–990
CrossRef Pubmed Google scholar
[8]
Díaz-García C, Herraiz S. The artificial ovary: any new step is a step forward. Fertil Steril 2014; 101(4): 940
CrossRef Pubmed Google scholar
[9]
Schmidt VM, Isachenko E, Rappl G, Rahimi G, Hanstein B, Morgenstern B, Mallmann P, Isachenko V. Construction of human artificial ovary from cryopreserved ovarian tissue: appearance of apoptosis and necrosis after enzymatic isolation of follicles. Cryobiology 2018; 84: 10–14
CrossRef Pubmed Google scholar
[10]
Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol 2016; 12(20): 2323–2332
CrossRef Pubmed Google scholar
[11]
Dawood AS, Salem HA. Current clinical applications of platelet-rich plasma in various gynecological disorders: an appraisal of theory and practice. Clin Exp Reprod Med 2018; 45(2): 67–74
CrossRef Pubmed Google scholar
[12]
Sfakianoudis K, Simopoulou M, Nitsos N, Rapani A, Pantou A, Vaxevanoglou T, Kokkali G, Koutsilieris M, Pantos K. A case series on platelet-rich plasma revolutionary management of poor responder patients. Gynecol Obstet Invest 2019; 84(1): 99–106
CrossRef Pubmed Google scholar
[13]
Devoto L, Palomino A, Céspedes P, Kohen P. Neuroendocrinology and ovarian aging. Gynecol Endocrinol 2012; 28 (sup1):14–17
CrossRef Pubmed Google scholar
[14]
Ye H, Zheng T, Li W, Li X, Fu X, Huang Y, Hu C, Li J, Huang J, Liu Z, Zheng L, Zheng Y. Ovarian stem cell nests in reproduction and ovarian aging. Cell Physiol Biochem 2017; 43(5): 1917–1925
CrossRef Pubmed Google scholar
[15]
Kim YJ, Kim YY, Kang BC, Kim MS, Ko IK, Liu HC, Rosenwaks Z, Ku SY. Induction of multiple ovulation via modulation of angiotensin II receptors in in vitro ovarian follicle culture models. J Tissue Eng Regen Med 2017; 11(11): 3100–3110
CrossRef Pubmed Google scholar
[16]
Kim YY, Tamadon A, Ku SY. Potential use of antiapoptotic proteins and noncoding RNAs for efficient in vitro follicular maturation and ovarian bioengineering. Tissue Eng Part B Rev 2017; 23(2): 142–158
CrossRef Pubmed Google scholar
[17]
Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuño Moya C, Donnez J, Amorim CA. A new step toward the artificial ovary: survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril 2014; 101(4): 1149–1156
CrossRef Pubmed Google scholar
[18]
Tamadon A, Park KH, Kim YY, Kang BC, Ku SY. Efficient biomaterials for tissue engineering of female reproductive organs. Tissue Eng Regen Med 2016; 13(5): 447–454
CrossRef Pubmed Google scholar
[19]
Paulini F, Vilela JMV, Chiti MC, Donnez J, Jadoul P, Dolmans MM, Amorim CA. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online 2016; 33(3): 425–432
CrossRef Pubmed Google scholar
[20]
Kniazeva E, Hardy AN, Boukaidi SA, Woodruff TK, Jeruss JS, Shea LD. Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Sci Rep 2015; 5(1): 17709
CrossRef Pubmed Google scholar
[21]
Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, Van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet 2018; 35(1): 41–48
CrossRef Pubmed Google scholar
[22]
Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8: 15261
CrossRef Pubmed Google scholar
[23]
Yun JW, Kim YY, Ahn JH, Kang BC, Ku SY. Use of nonhuman primates for the development of bioengineered female reproductive organs. Tissue Eng Regen Med 2016; 13(4): 323–334
CrossRef Pubmed Google scholar
[24]
Del Priore G, Schlatt S, Malanowska-Stega J. Uterus transplant techniques in primates: 10 years’ experience. Exp Clin Transplant 2008; 6(1): 87–94
Pubmed
[25]
von Schönfeldt V, Chandolia R, Ochsenkühn R, Nieschlag E, Kiesel L, Sonntag B. FSH prevents depletion of the resting follicle pool by promoting follicular number and morphology in fresh and cryopreserved primate ovarian tissues following xenografting. Reprod Biol Endocrinol 2012; 10(1): 98
CrossRef Pubmed Google scholar
[26]
Kim YY, Yun JW, Kim JM, Park CG, Rosenwaks Z, Liu HC, Kang BC, Ku SY. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles. J Investig Med 2016; 64(4): 888–893
CrossRef Pubmed Google scholar
[27]
Huxley A. Brave New World. Reprint edition. New York: Harper Perennial, 1932
[28]
Johansson HKL, Svingen T, Fowler PA, Vinggaard AM, Boberg J. Environmental influences on ovarian dysgenesis—developmental windows sensitive to chemical exposures. Nat Rev Endocrinol 2017; 13(7): 400–414
CrossRef Pubmed Google scholar
[29]
Luciano AA, Lanzone A, Goverde AJ. Management of female infertility from hormonal causes. Int J Gynaecol Obstet 2013; 123(Suppl 2): S9–S17
CrossRef Pubmed Google scholar
[30]
Simopoulou M, Asimakopoulos B, Bakas P, Boyadjiev N, Tzanakaki D, Creatsas G. Oocyte and embryo vitrification in the IVF laboratory: a comprehensive review. Folia Med (Plovdiv) 2014; 56(3): 161–169
CrossRef Pubmed Google scholar
[31]
Ho JR, Woo I, Louie K, Salem W, Jabara SI, Bendikson KA, Paulson RJ, Chung K. A comparison of live birth rates and perinatal outcomes between cryopreserved oocytes and cryopreserved embryos. J Assist Reprod Genet 2017; 34(10): 1359–1366
CrossRef Pubmed Google scholar
[32]
Kim S, Lee Y, Lee S, Kim T. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci 2018; 61(4): 431–442
CrossRef Pubmed Google scholar
[33]
Practice Committee of American Society for Reproductive Medicine. Ovarian tissue cryopreservation: a committee opinion. Fertil Steril 2014; 101(5): 1237–1243
CrossRef Pubmed Google scholar
[34]
Shi Q, Xie Y, Wang Y, Li S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep 2017; 7(1): 8538
CrossRef Pubmed Google scholar
[35]
Mathias FJ, D’Souza F, Uppangala S, Salian SR, Kalthur G, Adiga SK. Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 2014; 60(6): 317–322
CrossRef Pubmed Google scholar
[36]
Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci 2017; 24(8): 1111–1120
CrossRef Pubmed Google scholar
[37]
Perrin J, Saïas-Magnan J, Broussais F, Bouabdallah R, D’Ercole C, Courbiere B. First French live-birth after oocyte vitrification performed before chemotherapy for fertility preservation. J Assist Reprod Genet 2016; 33(5): 663–666
CrossRef Pubmed Google scholar
[38]
Dittrich R, Lotz L, Keck G, Hoffmann I, Mueller A, Beckmann MW, van der Ven H, Montag M. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril 2012; 97(2): 387–390
CrossRef Pubmed Google scholar
[39]
Silber S. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet 2016; 33(12): 1595–1603
CrossRef Pubmed Google scholar
[40]
Torrealday S, Pal L. Premature menopause. Endocrinol Metab Clin North Am 2015; 44(3): 543–557
CrossRef Pubmed Google scholar
[41]
Balasch J, Gratacós E. Delayed childbearing: effects on fertility and the outcome of pregnancy. Curr Opin Obstet Gynecol 2012; 24(3): 187–193
CrossRef Pubmed Google scholar
[42]
Meczekalski B, Czyzyk A, Kunicki M, Podfigurna-Stopa A, Plociennik L, Jakiel G, Maciejewska-Jeske M, Lukaszuk K. Fertility in women of late reproductive age: the role of serum anti-Müllerian hormone (AMH) levels in its assessment. J Endocrinol Invest 2016; 39(11): 1259–1265
CrossRef Pubmed Google scholar
[43]
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48(1): 68
CrossRef Pubmed Google scholar
[44]
Bulletti C, Palagiano A, Pace C, Cerni A, Borini A, de Ziegler D. The artificial womb. Ann N Y Acad Sci 2011; 1221(1): 124–128
CrossRef Pubmed Google scholar
[45]
Bulletti C, Jasonni VM, Tabanelli S, Gianaroli L, Ciotti PM, Ferraretti AP, Flamigni C. Early human pregnancy in vitro utilizing an artificially perfused uterus. Fertil Steril 1988; 49(6): 991–996
CrossRef Pubmed Google scholar
[46]
Pak SC, Song CH, So GY, Jang CH, Lee KH, Kim JY. Extrauterine incubation of fetal goats applying the extracorporeal membrane oxygenation via umbilical artery and vein. J Korean Med Sci 2002; 17(5): 663–668
CrossRef Pubmed Google scholar
[47]
Mittra AK, Choudhary NK, Zadgaonkar AS. Development of an artificial womb for acoustical simulation of mother’s abdomen. Int J Biomed Eng Technol 2008; 1(3): 315
CrossRef Google scholar
[48]
Simonstein F. Artificial reproduction technologies (RTs)—all the way to the artificial womb? Med Health Care Philos 2006; 9(3): 359–365
CrossRef Pubmed Google scholar
[49]
Nick O, Megan E. Construction and test of an artificial uterus for ex situ development of shark embryos. Zoo Biol 2012; 31(2): 197–205
CrossRef Pubmed Google scholar
[50]
Partridge EA, Davey MG, Hornick MA, McGovern PE, Mejaddam AY, Vrecenak JD, Mesas-Burgos C, Olive A, Caskey RC, Weiland TR, Han J, Schupper AJ, Connelly JT, Dysart KC, Rychik J, Hedrick HL, Peranteau WH, Flake AW. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017; 8: 15112
CrossRef Pubmed Google scholar
[51]
Hellström M, El-Akouri RR, Sihlbom C, Olsson BM, Lengqvist J, Bäckdahl H, Johansson BR, Olausson M, Sumitran-Holgersson S, Brännström M. Towards the development of a bioengineered uterus: comparison of different protocols for rat uterus decellularization. Acta Biomater 2014; 10(12): 5034–5042
CrossRef Pubmed Google scholar
[52]
Lü SH, Wang HB, Liu H, Wang HP, Lin QX, Li DX, Song YX, Duan CM, Feng LX, Wang CY. Reconstruction of engineered uterine tissues containing smooth muscle layer in collagen/matrigel scaffold in vitro. Tissue Eng Part A 2009; 15(7): 1611–1618
CrossRef Pubmed Google scholar
[53]
Kisu I, Mihara M, Banno K, Hara H, Masugi Y, Araki J, Iida T, Yamada Y, Kato Y, Shiina T, Suganuma N, Aoki D. Uterus allotransplantation in cynomolgus macaque: a preliminary experience with non-human primate models. J Obstet Gynaecol Res 2014; 40(4): 907–918
CrossRef Pubmed Google scholar
[54]
Brännström M, Johannesson L, Bokström H, Kvarnström N, Mölne J, Dahm-Kähler P, Enskog A, Milenkovic M, Ekberg J, Diaz-Garcia C, Gäbel M, Hanafy A, Hagberg H, Olausson M, Nilsson L. Livebirth after uterus transplantation. Lancet 2015; 385(9968): 607–616
CrossRef Pubmed Google scholar
[55]
Brännström M. Womb transplants with live births: an update and the future. Expert Opin Biol Ther 2017; 17(9): 1105–1112
CrossRef Pubmed Google scholar
[56]
Ozkan O, Dogan NU, Ozkan O, Mendilcioglu I, Dogan S, Aydinuraz B, Simsek M. Uterus transplantation: from animal models through the first heart beating pregnancy to the first human live birth. Womens Health (Lond) 2016; 12(4): 442–449
CrossRef Pubmed Google scholar
[57]
Brännström M. Uterus transplantation and beyond. J Mater Sci Mater Med 2017; 28(5): 70
CrossRef Pubmed Google scholar
[58]
Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology 2018; 159(2): 1188–1198
CrossRef Pubmed Google scholar
[59]
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2018; 24(4): 393–415
CrossRef Pubmed Google scholar
[60]
Huh Y, Kim YY, Ku SY. Perspective of bioartificial uterus as gynecological regenerative medicine. Tissue Eng Regen Med 2012; 9(5): 233–239
CrossRef Google scholar
[61]
Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 14–38
CrossRef Pubmed Google scholar
[62]
Bosteels J, Kasius J, Weyers S, Broekmans FJ, Mol BWJ, D’Hooghe TM. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Syst Rev 2015; (2): CD009461
CrossRef Pubmed Google scholar
[63]
Dunselman GAJ, Vermeulen N, Becker C, Calhaz-Jorge C, D’Hooghe T, De Bie B, Heikinheimo O, Horne AW, Kiesel L, Nap A, Prentice A, Saridogan E, Soriano D, Nelen W; European Society of Human Reproduction and Embryology. ESHRE guideline: management of women with endometriosis. Hum Reprod 2014; 29(3): 400–412
CrossRef Pubmed Google scholar
[64]
Johnston-MacAnanny EB, Hartnett J, Engmann LL, Nulsen JC, Sanders MM, Benadiva CA. Chronic endometritis is a frequent finding in women with recurrent implantation failure after in vitro fertilization. Fertil Steril 2010; 93(2): 437–441
CrossRef Pubmed Google scholar
[65]
Kitaya K, Matsubayashi H, Yamaguchi K, Nishiyama R, Takaya Y, Ishikawa T, Yasuo T, Yamada H. Chronic endometritis: potential cause of infertility and obstetric and neonatal complications. Am J Reprod Immunol 2016; 75(1): 13–22
CrossRef Pubmed Google scholar
[66]
Barash A, Dekel N, Fieldust S, Segal I, Schechtman E, Granot I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril 2003; 79(6): 1317–1322
CrossRef Pubmed Google scholar
[67]
Cervelló I, Santamaría X, Miyazaki K, Maruyama T, Simón C. Cell therapy and tissue engineering from and toward the uterus. Semin Reprod Med 2015; 33(5): 366–372
CrossRef Pubmed Google scholar
[68]
Zadehmodarres S, Salehpour S, Saharkhiz N, Nazari L. Treatment of thin endometrium with autologous platelet-rich plasma: a pilot study. JBRA Assist Reprod 2017; 21(1): 54–56
CrossRef Pubmed Google scholar
[69]
Gameiro S, Boivin J, Peronace L, Verhaak CM. Why do patients discontinue fertility treatment? A systematic review of reasons and predictors of discontinuation in fertility treatment. Hum Reprod Update 2012; 18(6): 652–669
CrossRef Pubmed Google scholar
[70]
Garel M, Blondel B, Karpel L, Blanchet V, Breart G, Frydman R, Olivennes F. Women’s views on Friendly IVF: a qualitative preliminary study. J Psychosom Obstet Gynaecol 2009; 30(2): 101–104
CrossRef Pubmed Google scholar
[71]
Simonstein F, Mashiach-Eizenberg M. The artificial womb: a pilot study considering people’s views on the artificial womb and ectogenesis in Israel. Camb Q Healthc Ethics 2009; 18(1): 87–94
CrossRef Pubmed Google scholar
[72]
Brucker SY, Rall K, Campo R, Oppelt P, Isaacson K. Treatment of congenital malformations. Semin Reprod Med 2011; 29(2): 101–112
CrossRef Pubmed Google scholar
[73]
Beale JM, Creighton SM. Long-term health issues related to disorders or differences in sex development/intersex. Maturitas 2016; 94: 143–148
CrossRef Pubmed Google scholar
[74]
Brinsden PR. Gestational surrogacy. Hum Reprod Update 2003; 9(5): 483–491
CrossRef Pubmed Google scholar
[75]
Long Y, Yao D, Pan X, Ou T. Clinical efficacy and safety of nerve-sparing radical hysterectomy for cervical cancer: a systematic review and meta-analysis. PLoS ONE 2014; 9(4): e94116
CrossRef Pubmed Google scholar
[76]
Brännström M, Dahm Kähler P, Greite R, Mölne J, Díaz-García C, Tullius SG. Uterus transplantation: a rapidly expanding field. Transplantation 2018; 102(4): 569–577
CrossRef Pubmed Google scholar
[77]
Puntambekar S, Telang M, Kulkarni P, Jadhav S, Sathe R, Warty N, Puntambekar S, Kade S, Panse M, Agarkhedkar N, Gandhi G, Manchekar M, Parekh H, Parikh K, Desai R, Mehta M, Chitale M, Nanda S. Laparoscopic-assisted uterus retrieval from live organ donors for uterine transplant. J Minim Invasive Gynecol 2018; 25(4): 571–572
CrossRef Pubmed Google scholar
[78]
Saso S, Clarke A, Bracewell-Milnes T, Saso A, Al-Memar M, Thum MY, Yazbek J, Del Priore G, Hardiman P, Ghaem-Maghami S, Smith JR. Psychological issues associated with absolute uterine factor infertility and attitudes of patients toward uterine transplantation. Prog Transplant 2016; 26(1): 28–39
CrossRef Pubmed Google scholar
[79]
Landau R. Artificial womb versus natural birth: an exploratory study of women’s views. J Reprod Infant Psychol 2007; 25(1): 4–17
CrossRef Google scholar
[80]
Kaczor C. Could artificial wombs end the abortion debate? Natl Cathol Bioeth Q 2005; 5(2): 283–301
CrossRef Pubmed Google scholar
[81]
Devolder K, Harris J. The ambiguity of the embryo: ethical inconsistency in the human embryonic stem cell debate. Metaphilosophy 2007; 38(2–3): 153–169
CrossRef Google scholar
[82]
Cutas D, Dondorp W, Swierstra T, Repping S, de Wert G. Artificial gametes: perspectives of geneticists, ethicists and representatives of potential users. Med Health Care Philos 2014; 17(3): 339–345
CrossRef Pubmed Google scholar
[83]
Hendriks S, Dancet EA, van Pelt AM, Hamer G, Repping S. Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 2015; 21(3): 285–296
CrossRef Pubmed Google scholar
[84]
Mertes H, Pennings G. Embryonic stem cell-derived gametes and genetic parenthood: a problematic relationship. Camb Q Healthc Ethics 2008; 17(1): 7–14
CrossRef Pubmed Google scholar
[85]
Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338(6109): 971–975
CrossRef Pubmed Google scholar
[86]
Easley CA, Simerly CR, Schatten G. Gamete derivation from embryonic stem cells, induced pluripotent stem cells or somatic cell nuclear transfer-derived embryonic stem cells: state of the art. Reprod Fertil Dev 2014; 27(1): 89–92
CrossRef Pubmed Google scholar
[87]
Douglas T, Harding C, Bourne H, Savulescu J. Stem cell research and same-sex reproduction. In: Stem Cells: New Frontiers in Science & Ethics. World Scientific, 2012: 207–228
[88]
Smajdor A, Cutas D. Will artificial gametes end infertility? Health Care Anal 2015; 23(2): 134–147
CrossRef Pubmed Google scholar
[89]
Malchesky PS. Artificial organs 2015: a year in review. Artif Organs 2016; 40(3): 294–321
CrossRef Pubmed Google scholar
[90]
Simmons PD. The artificial heart: how close are we, and do we want to get there? J Law Med Ethics 2001; 29(3-4): 401–406
CrossRef Pubmed Google scholar
[91]
Harper J, Magli MC, Lundin K, Barratt CLR, Brison D. When and how should new technology be introduced into the IVF laboratory? Hum Reprod 2012; 27(2): 303–313
CrossRef Pubmed Google scholar
[92]
Brink JG, Hassoulas J. The first human heart transplant and further advances in cardiac transplantation at Groote Schuur Hospital and the University of Cape Town. Cardiovasc J Afr 2009; 20(1): 31–35
Pubmed
[93]
Leese HJ, Whittall H. Regulation of the transition from research to clinical practice in human assisted conception. Hum Fertil (Camb) 2001; 4(3): 172–176
CrossRef Pubmed Google scholar
[94]
Jones BP, Williams NJ, Saso S, Thum MY, Quiroga I, Yazbek J, Wilkinson S, Ghaem-Maghami S, Thomas P, Smith JR. Uterine transplantation in transgender women. BJOG 2019; 126(2): 152–156
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Mara Simopoulou, Konstantinos Sfakianoudis, Petroula Tsioulou, Anna Rapani, Polina Giannelou, Nikolaos Kiriakopoulos, Agni Pantou, Nikolaos Vlahos, George Anifandis, Stamatis Bolaris, Konstantinos Pantos, and Michael Koutsilieris declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring the approval of a relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(527 KB)

Accesses

Citations

Detail

Sections
Recommended

/