Cover illustration
Establishment of retrovirus-producing cell line and optimization of culture conditions. CAR expression plasmid was transfected into Phoenix Eco cells by lipotamine 2000. (Courtesy of Dr. Zhinan Chen. See pages 57-68 by Zhao Zhang et al. for more information.)
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. This malignancy is associated with poor prognosis and high mortality. Novel approaches for prolonging the overall survival of patients with advanced HCC are urgently needed. The antitumor activities of adoptive cell transfer therapy (ACT), such as strategies based on tumor-infiltrating lymphocytes and cytokine-induced killer cells, are more effective than those of traditional strategies. Currently, chimeric antigen receptor T-cell (CAR-T) immunotherapy has achieved numerous breakthroughs in the treatment of hematological malignancies, including relapsed or refractory lymphoblastic leukemia and refractory large B-cell lymphoma. Nevertheless, this approach only provides a modest benefit in the treatment of solid tumors. The clinical results of CAR-T immunotherapy for HCC that could be obtained at present are limited. Some published studies have demonstrated that CAR-T could inhibit tumor growth and cause severe side effects. In this review, we summarized the current application of ACT, the challenges encountered by CAR-T technology in HCC treatment, and some possible strategies for the future direction of immunotherapeutic research.
Strategies in comprehensive therapy for gastrointestinal (GI) cancer have been optimized in the last decades to improve patients’ outcomes. However, treatment options remain limited for late-stage or refractory diseases. The efficacy of immune checkpoint inhibitors (ICIs) for treatment of refractory GI cancer has been confirmed by randomized clinical trials. In 2017, pembrolizumab was approved by the US Food and Drug Administration as the first agent for treatment of metastatic solid tumors with mismatch repair deficiency, especially for colorectal cancer. Given the different mechanisms, oncologists have focused on determining whether ICIs-based combination strategies could achieve higher efficacy than conventional therapy alone in late-stage or even front-line treatment of GI cancer. This review discusses the current status of combining immune checkpoint inhibitors with molecular targeted therapy, chemotherapy, or radiotherapy in GI cancer in terms of mechanisms, safety, and efficacy to provide basis for future research.
Immune checkpoint inhibitors are a promising strategy in the treatment of cancer, especially advanced types. However, not all patients are responsive to immune checkpoint inhibitors. The response rate depends on the immune microenvironment, tumor mutational burden (TMB), expression level of immune checkpoint proteins, and molecular subtypes of cancers. Along with the Cancer Genome Project, various open access databases, including The Cancer Genome Atlas and Gene Expression Omnibus, provide large volumes of data, which allow researchers to explore responsive or resistant biomarkers of immune checkpoint inhibitors. In this review, we introduced some methodologies on database selection, biomarker screening, current progress of immune checkpoint blockade in solid tumor treatment, possible mechanisms of drug resistance, strategies of overcoming resistance, and indications for immune checkpoint inhibitor therapy.
Immunotherapy has become the fourth cancer therapy after surgery, chemotherapy, and radiotherapy. In particular, immune checkpoint inhibitors are proved to be unprecedentedly in increasing the overall survival rates of patients with refractory cancers, such as advanced melanoma, non-small cell lung cancer, and renal cell carcinoma. However, inhibitor therapies are only effective in a small proportion of patients with problems, such as side effects and high costs. Therefore, doctors urgently need reliable predictive biomarkers for checkpoint inhibitor therapies to choose the optimal therapies. Here, we review the biomarkers that can serve as potential predictors of the outcomes of immune checkpoint inhibitor treatment, including tumor-specific profiles and tumor microenvironment evaluation and other factors.
Human leukocyte antigen (HLA)-matched donors for hematopoietic stem cell transplantation (HSCT) have long been scarce in China. Haploidentical (haplo) donors are available for the vast majority of patients, but toxicity has limited this approach. Three new approaches for haplo-HSCT originated from Italy, China, and USA in 1990 and have been developed to world-renowned system up to now. The Chinese approach have been greatly improved by implementing new individualized conditioning regimens, donor selection based on non-HLA systems, risk-directed strategies for graft-versus-host disease and relapse, and infection management. Haplo-HSCT has exhibited similar efficacy to HLA-matched HSCT and has gradually become the predominant donor source and the first alternative donor choice for allo-HSCT in China. Registry-based analyses and multicenter studies adhering to international standards facilitated the transformation of the unique Chinese experience into an inspiration for the refinement of global practice. This review will focus on how the new era in which “everyone has a donor” will become a reality in China.
Lung cancer is the most common incident cancer and the leading cause of cancer death. In recent years, the development of tumor immunotherapy especially chimeric antigen receptor T (CAR-T) cell has shown a promising future. Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation expressed in various types of tumors and has been detected in non-small cell lung cancer with a mutation rate of 10%. Thus, EGFRvIII is a potential antigen for targeted lung cancer therapy. In this study, CAR vectors were constructed and transfected into virus-packaging cells. Then, activated T cells were infected with retrovirus harvested from stable virus-producing single clone cell lines. CAR expression on the surfaces of the T cells was detected by flow cytometry and Western blot. The function of CAR-T targeting EGFRvIII was then evaluated. The EGFRvIII-CAR vector was successfully constructed and confirmed by DNA sequencing. A stable virus-producing cell line was produced from a single clone by limited dilution. The culture conditions for the cell line, including cell density, temperature, and culture medium were optimized. After infection with retrovirus, CAR was expressed on more than 90% of the T cells. The proliferation of CAR-T cells were induced by cytokine and specific antigen in vitro. More importantly, EGFRvIII-CART specifically and efficiently recognized and killed A549-EGFRvIII cells with an effector/target ratio of 10:1 by expressing and releasing cytokines, including perforin, granzyme B, IFN-g, and TNF-α. The in vivo study indicated that the metastasis of A549-EGFRvIII cells in mice were inhibited by EGFRvIII-CART cells, and the survival of the mice was significantly prolonged with no serious side effects. EGFRvIII-CART showed significantly efficient antitumor activity against lung cancer cells expressing EGFRvIII in vivo and in vitro. Therefore, CAR-T targeting EGFRvIII is a potential therapeutic strategy in preventing recurrence and metastasis of lung cancer after surgery.
Cytokine-activated T cells (CATs) can be easily expanded and are widely applied to cancer immunotherapy. However, the good efficacy of CATs is rarely reported in clinical applications because CATs have no or very low antigen specificity. The low-efficacy problem can be resolved using T cell antigen receptor-engineered CAT (TCR-CAT). Herein, we demonstrate that NY-ESO-1157–165 HLA-A*02:01-specific high-affinity TCR (HAT)-transduced CATs can specifically kill cancer cells with good efficacy. With low micromolar range dissociation equilibrium constants, HAT-transduced CATs showed good specificity with no off-target killing. Furthermore, the high-affinity TCR-CATs delivered significantly better activation and cytotoxicity than the equivalent TCR-engineered T cells (TCR-Ts) in terms of interferon-g and granzyme B production and in vitro cancer cell killing ability. TCR-CAT may be a very good alternative to the expensive TCR-T, which is considered an effective personalized cyto-immunotherapy.
Colorectal cancer (CRC) is a common malignant tumor in the digestive tract, and 30%–85% of CRCs express epidermal growth factor receptors (EGFRs). Recently, treatments using cetuximab, also named C225, an anti-EGFR monoclonal antibody, for CRC have been demonstrated to cause an S492R mutation in EGFR. However, little is known about the biological function of S492R EGFR. Therefore, we attempted to elucidate its biological function in CRC cells and explore new treatment strategies for this mutant form. Our study indicated that EGFR and S492R EGFR accelerate the growth of CRC cells in vitro and in vivo and monoclonal antibody CH12, which specifically recognizes an EGFR tumor-specific epitope, can bind efficiently to S492R EGFR. Furthermore, mAb CH12 showed significantly stronger growth suppression activities and induced a more potent antibody-dependent cellular cytotoxicity effect on CRC cells bearing S492R EGFR than mAb C225. mAb CH12 obviously suppressed the growth of CRC xenografts with S492R EGFR mutations in vivo. Thus, mAb CH12 may be a promising therapeutic agent in treating patients with CRC bearing an S492R EGFR mutation.
Autoimmune diseases (ADs) increase the risk of non-Hodgkin’s lymphoma and contribute to poor prognosis of patients. However, the association between immunologic markers and clinical outcome has rarely been investigated. This study aims to analyze the prognostic value of pretreatment immunologic markers in newly diagnosed patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively reviewed the data on 502 patients with DLBCL treated in our institution from January 2013 to March 2018. Survival functions were estimated using Kaplan–Meier method and Cox regression model. The 3-year progression free survival (PFS) and overall survival (OS) rates were 70.2% and 80.9%, respectively, and the complete remission (CR) rate was 78.1%. Among the patients, those with multiple (≥3) abnormal immunologic markers had significantly shorter 3-year PFS (52.7% vs. 77.3%, P<0.001) and OS (68.5% vs. 85.8%, P=0.001) than those without multiple abnormal immunologic markers. Multivariate analysis revealed that the presence of multiple abnormal immunologic markers and the elevated serum levels of lactate dehydrogenase were the independent adverse prognostic factors for PFS (P=0.008, P<0.001) and OS (P=0.003, P<0.001). Meanwhile, advanced Ann Arbor stage was an independent adverse prognostic factor for PFS (P=0.001) and age>60 years for OS (P=0.014). In conclusion, the immunologic status was closely related to lymphoma progression, and this study provides new insights into the risk stratification of patients with DLBCL.
Mitochondrion-localized retinol dehydrogenase 13 (Rdh13) is a short-chain dehydrogenase/reductase involved in vitamin A metabolism in both humans and mice. We previously generated Rdh13 knockout mice and showed that Rdh13 deficiency causes severe acute retinal light damage. In this study, considering that Rdh13 is highly expressed in mouse liver, we further evaluated the potential effect of Rdh13 on liver injury induced by carbon tetrachloride (CCl4). Although Rdh13 deficiency showed no significant effect on liver histology and physiological functions under regular culture, the Rdh13−/− mice displayed an attenuated response to CCl4-induced liver injury. Their livers also exhibited less histological changes and contained lower levels of liver-related metabolism enzymes compared with the livers of wild-type (WT) mice. Furthermore, the Rdh13−/− mice had Rdh13 deficiency and thus their liver cells were protected from apoptosis, and the quantity of their proliferative cells became lower than that in WT after CCl4 exposure. The ablation of Rdh13 gene decreased the expression levels of thyroid hormone-inducible nuclear protein 14 (Spot14) and cytochrome P450 (Cyp2e1) in the liver, especially after CCl4 treatment for 48 h. These data suggested that the alleviated liver damage induced by CCl4 in Rdh13−/− mice was caused by Cyp2e1 enzymes, which promoted reductive CCl4 metabolism by altering the status of thyroxine metabolism. This result further implicated Rdh13 as a potential drug target in preventing chemically induced liver injury.
Comprehension of the medical diagnoses of doctors and treatment of diseases is important to understand the underlying principle in selecting appropriate acupoints. The pattern recognition process that pertains to symptoms and diseases and informs acupuncture treatment in a clinical setting was explored. A total of 232 clinical records were collected using a Charting Language program. The relationship between symptom information and selected acupoints was trained using an artificial neural network (ANN). A total of 11 hidden nodes with the highest average precision score were selected through a tenfold cross-validation. Our ANN model could predict the selected acupoints based on symptom and disease information with an average precision score of 0.865 (precision, 0.911; recall, 0.811). This model is a useful tool for diagnostic classification or pattern recognition and for the prediction and modeling of acupuncture treatment based on clinical data obtained in a real-world setting. The relationship between symptoms and selected acupoints could be systematically characterized through knowledge discovery processes, such as pattern identification.
This retrospective study aims to demonstrate the effect of antitubercular treatment (ATT) on the pregnancy outcomes and prognoses of patients with genital tuberculosis (GTB) who had received laparoscopy and/or hysteroscopy. This study included 78 patients with infertility and who were diagnosed with GTB through laparoscopy and/or hysteroscopy over the period of November 2005 to October 2015. The recruited patients were divided into ATT and nonATT groups on the basis of ATT duration. The GTB recurrence rates, menstrual patterns, and pregnancy outcomes of the patients were determined at follow-up. Among the 78 patients, 46 received ATT and 32 did not receive ATT. The menstrual volumes of patients in the ATT group significantly decreased relative to those of patients in the nonATT group. GTB did not recur among all patients regardless of treatment. A total of 11 pregnancies (36.7%) in the ATT group and 19 pregnancies (63.3%) in the nonATT group were observed. Pregnancy rates significantly differed (P = 0.002) between the two groups. ATT may decrease the menstrual volume and pregnancy rates of patients who were diagnosed with GTB through laparoscopy and/or hysteroscopy. In addition, ATT did not improve the prognosis of patients with chronic GTB.
Infection with Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 as an important respiratory disease with high fatality rates of 40%–60%. Despite the increased number of cases over subsequent years, the number of pediatric cases remained low. A review of studies conducted from June 2012 to April 19, 2016 reported 31 pediatric MERS-CoV cases. In this paper, we present the clinical and laboratory features of seven patients with pediatric MERS. Five patients had no underlying medical illnesses, and three patients were asymptomatic. Of the seven cases, four (57%) patients sought medical advice within 1–7 days from the onset of symptoms. The three other patients (43%) were asymptomatic and were in contact with patients with confirmed diagnosis of MERS-CoV. The most common presenting symptoms were fever (57%), cough (14%), shortness of breath (14%), vomiting (28%), and diarrhea (28%). Two (28.6%) patients had platelet counts of<150 × 109/L, and one patient had an underlying end-stage renal disease. The remaining patients presented with normal blood count, liver function, and urea and creatinine levels. The documented MERS-CoV Ct values were 32–38 for four of the seven cases. Two patients (28.6%) had abnormal chest radiographic findings of bilateral infiltration. One patient (14.3%) required ventilator support, and two patients (28.6%) required oxygen supplementation. All the seven patients were discharged without complications.