Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12
Qiongna Dong, Bizhi Shi, Min Zhou, Huiping Gao, Xiaoying Luo, Zonghai Li, Hua Jiang
Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12
Colorectal cancer (CRC) is a common malignant tumor in the digestive tract, and 30%–85% of CRCs express epidermal growth factor receptors (EGFRs). Recently, treatments using cetuximab, also named C225, an anti-EGFR monoclonal antibody, for CRC have been demonstrated to cause an S492R mutation in EGFR. However, little is known about the biological function of S492R EGFR. Therefore, we attempted to elucidate its biological function in CRC cells and explore new treatment strategies for this mutant form. Our study indicated that EGFR and S492R EGFR accelerate the growth of CRC cells in vitro and in vivo and monoclonal antibody CH12, which specifically recognizes an EGFR tumor-specific epitope, can bind efficiently to S492R EGFR. Furthermore, mAb CH12 showed significantly stronger growth suppression activities and induced a more potent antibody-dependent cellular cytotoxicity effect on CRC cells bearing S492R EGFR than mAb C225. mAb CH12 obviously suppressed the growth of CRC xenografts with S492R EGFR mutations in vivo. Thus, mAb CH12 may be a promising therapeutic agent in treating patients with CRC bearing an S492R EGFR mutation.
S492R EGFR ectodomain mutation / colorectal cancer / mAb CH12 / immunnotherapy
[1] |
Encarnação JC, Pires AS, Amaral RA, Gonçalves TJ, Laranjo M, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Abrantes AM, Botelho MF. Butyrate, a dietary fiber derivative that improves irinotecan effect in colon cancer cells. J Nutr Biochem 2018; 56: 183–192
CrossRef
Pubmed
Google scholar
|
[2] |
Goel G. Evolution of regorafenib from bench to bedside in colorectal cancer: is it an attractive option or merely a “me too” drug? Cancer Manag Res 2018; 10: 425–437
CrossRef
Pubmed
Google scholar
|
[3] |
Strickler JH, Hurwitz HI. Palliative treatment of metastatic colorectal cancer: what is the optimal approach? Curr Oncol Rep 2014; 16(1): 363
CrossRef
Pubmed
Google scholar
|
[4] |
Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol 2018; 9(1): 160–169
CrossRef
Pubmed
Google scholar
|
[5] |
Dietvorst MH, Eskens FA. Current and novel treatment options for metastatic colorectal cancer: emphasis on aflibercept. Biol Ther 2013; 3(1): 25–33
CrossRef
Pubmed
Google scholar
|
[6] |
Sanz-Garcia E, Grasselli J, Argiles G, Elez ME, Tabernero J. Current and advancing treatments for metastatic colorectal cancer. Expert Opin Biol Ther 2016; 16(1): 93–110
CrossRef
Pubmed
Google scholar
|
[7] |
Lee SY, Oh SC. Advances of targeted therapy in treatment of unresectable metastatic colorectal cancer. BioMed Res Int 2016; 2016: 7590245
CrossRef
Pubmed
Google scholar
|
[8] |
Tomida C, Aibara K, Yamagishi N, Yano C, Nagano H, Abe T, Ohno A, Hirasaka K, Nikawa T, Teshima-Kondo S. The malignant progression effects of regorafenib in human colon cancer cells. J Med Invest 2015; 62(3-4): 195–198
CrossRef
Pubmed
Google scholar
|
[9] |
Liang L, Wang L, Zhu P, Xia Y, Qiao Y, Wu J, Zhuang W, Fei J, Wen Y, Jiang X. A pilot study of apatinib as third-line treatment in patients with heavily treated metastatic colorectal cancer. Clin Colorectal Cancer 2018; 17(3): e443–e449
CrossRef
Pubmed
Google scholar
|
[10] |
Tomida C, Nagano H, Yamagishi N, Uchida T, Ohno A, Hirasaka K, Nikawa T, Teshima-Kondo S. Regorafenib induces adaptive resistance of colorectal cancer cells via inhibition of vascular endothelial growth factor receptor. J Med Invest 2017; 64 (3.4): 262–265
CrossRef
Google scholar
|
[11] |
Yamaoka T, Ohba M, Ohmori T. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int J Mol Sci 2017; 18(11): E2420
CrossRef
Pubmed
Google scholar
|
[12] |
Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, Zuo D, Liu L, Bertos NR, Munoz-Ramos V, Basik M, Petrecca K, Asselah J, Meterissian S, Guiot MC, Omeroglu A, Kleinman CL, Park M, Ragoussis J. A targetable EGFR-dependent tumor-initiating program in breast cancer. Cell Reports 2017; 21(5): 1140–1149
CrossRef
Pubmed
Google scholar
|
[13] |
Zhou P, Hu J, Wang X, Wang J, Zhang Y, Wang C. Epidermal growth factor receptor expression affects proliferation and apoptosis in non-small cell lung cancer cells via the extracellular signal-regulated kinase/microRNA 200a signaling pathway. Oncol Lett 2018; 15(4): 5201–5207
CrossRef
Pubmed
Google scholar
|
[14] |
Li J, Liang R, Song C, Xiang Y, Liu Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. OncoTargets Ther 2018; 11: 731–742
CrossRef
Pubmed
Google scholar
|
[15] |
Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17(1): 53
CrossRef
Pubmed
Google scholar
|
[16] |
Broadbridge VT, Karapetis CS, Price TJ. Cetuximab in metastatic colorectal cancer. Expert Rev Anticancer Ther 2012; 12(5): 555–565
CrossRef
Pubmed
Google scholar
|
[17] |
Del Prete M, Giampieri R, Faloppi L, Bianconi M, Bittoni A, Andrikou K, Cascinu S. Panitumumab for the treatment of metastatic colorectal cancer: a review. Immunotherapy 2015; 7(7): 721–738
CrossRef
Pubmed
Google scholar
|
[18] |
Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, Salido M, Gallen M, Marsters S, Tsai SP, Minoche A, Seshagiri S, Serrano S, Himmelbauer H, Bellmunt J, Rovira A, Settleman J, Bosch F, Albanell J. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med 2012; 18(2): 221–223
CrossRef
Pubmed
Google scholar
|
[19] |
Esposito C, Rachiglio AM, La Porta ML, Sacco A, Roma C, Iannaccone A, Tatangelo F, Forgione L, Pasquale R, Barbaro A, Botti G, Ciardiello F, Normanno N. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies. Cancer Biol Ther 2013; 14(12): 1143–1146
CrossRef
Pubmed
Google scholar
|
[20] |
Tougeron D, Cortes U, Ferru A, Villalva C, Silvain C, Tourani JM, Levillain P, Karayan-Tapon L. Epidermal growth factor receptor (EGFR) and KRAS mutations during chemotherapy plus anti-EGFR monoclonal antibody treatment in metastatic colorectal cancer. Cancer Chemother Pharmacol 2013; 72(2): 397–403
CrossRef
Pubmed
Google scholar
|
[21] |
Newhall K, Price T, Peeters M, Kim TW, Li J, Cascinu S, Ruff P, Suresh AS, Thomas A, Tjulandin S, Ogbagabriel S, Boedigheimer M, Sexson S, Zhang K, Murugappan S, Sidhu R. Frequency of S492R mutations in the epidermal growth factor receptor: analysis of plasma DNA from metastatic colorectal cancer patients treated with panitumumab or cetuximab monotherapy. Ann Oncol 2014; 25 (suppl_2): ii109
CrossRef
Google scholar
|
[22] |
Jiang H, Wang H, Tan Z, Hu S, Wang H, Shi B, Yang L, Li P, Gu J, Wang H, Li Z. Growth suppression of human hepatocellular carcinoma xenografts by a monoclonal antibody CH12 directed to epidermal growth factor receptor variant III. J Biol Chem 2011; 286(7): 5913–5920
CrossRef
Pubmed
Google scholar
|
[23] |
Wang H, Shi B, Zhang Q, Jiang H, Hu S, Kong J, Yao M, Yang S, Li Z. Growth and metastasis suppression of glioma xenografts expressing exon 4-deletion variant of epidermal growth factor receptor by monoclonal antibody CH12-mediated receptor degradation. FASEB J 2012; 26(1): 73–80
CrossRef
Pubmed
Google scholar
|
[24] |
Luwor RB, Johns TG, Murone C, Huang HJ, Cavenee WK, Ritter G, Old LJ, Burgess AW, Scott AM. Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 2001; 61(14): 5355–5361
Pubmed
|
[25] |
Jiang H, Dong Q, Luo X, Shi B, Wang H, Gao H, Kong J, Zhang J, Li Z. The monoclonal antibody CH12 augments 5-fluorouracil-induced growth suppression of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III. Cancer Lett 2014; 342(1): 113–120
CrossRef
Pubmed
Google scholar
|
[26] |
Zhou M, Wang H, Zhou K, Luo X, Pan X, Shi B, Jiang H, Zhang J, Li K, Wang HM, Gao H, Lu S, Yao M, Mao Y, Wang HY, Yang S, Gu J, Li C, Li Z. A novel EGFR isoform confers increased invasiveness to cancer cells. Cancer Res 2013; 73(23): 7056–7067
CrossRef
Pubmed
Google scholar
|
[27] |
Wang H, Jiang H, Zhou M, Xu Z, Liu S, Shi B, Yao X, Yao M, Gu J, Li Z. Epidermal growth factor receptor vIII enhances tumorigenicity and resistance to 5-fluorouracil in human hepatocellular carcinoma. Cancer Lett 2009; 279(1): 30–38
CrossRef
Pubmed
Google scholar
|
[28] |
Balin-Gauthier D, Delord JP, Rochaix P, Mallard V, Thomas F, Hennebelle I, Bugat R, Canal P, Allal C. In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemother Pharmacol 2006; 57(6): 709–718
CrossRef
Pubmed
Google scholar
|
[29] |
Yang Y, Jiang H, Gao H, Kong J, Zhang P, Hu S, Shi B, Zhang P, Yao M, Li Z. The monoclonal antibody CH12 enhances the sorafenib-mediated growth inhibition of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III. Neoplasia 2012; 14(6): 509–518
CrossRef
Pubmed
Google scholar
|
[30] |
Liu K, Gao H, Wang Q, Wang L, Zhang B, Han Z, Chen X, Han M, Gao M. Hispidulin suppresses cell growth and metastasis by targeting PIM1 through JAK2/STAT3 signaling in colorectal cancer. Cancer Sci 2018; 109(5): 1369–1381
CrossRef
Pubmed
Google scholar
|
[31] |
Baratelli C, Zichi C, Di Maio M, Brizzi MP, Sonetto C, Scagliotti GV, Tampellini M. A systematic review of the safety profile of the different combinations of fluoropyrimidines and oxaliplatin in the treatment of colorectal cancer patients. Crit Rev Oncol Hematol 2018; 122: 21–29
CrossRef
Pubmed
Google scholar
|
[32] |
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet 2018; 57(10):1229–1254
CrossRef
Google scholar
|
[33] |
Fujita K, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 2015; 21(43): 12234–12248
CrossRef
Pubmed
Google scholar
|
[34] |
Teng CL, Wang CY, Chen YH, Lin CH, Hwang WL. Optimal sequence of irinotecan and oxaliplatin-based regimens in metastatic colorectal cancer: a population-based observational study. PLoS One 2015; 10(8): e0135673
CrossRef
Pubmed
Google scholar
|
[35] |
Montagut C, Albanell J. Mechanisms of acquired resistance to anti-EGF receptor treatment in colorectal cancer. Colorectal Cancer 2012; 1(6): 491–502
CrossRef
Google scholar
|
[36] |
Gan HK, Burgess AW, Clayton AH, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012; 72(12): 2924–2930
CrossRef
Pubmed
Google scholar
|
[37] |
Rogers JE. Patient considerations in metastatic colorectal cancer — role of panitumumab. OncoTargets Ther 2017; 10: 2033–2044
CrossRef
Pubmed
Google scholar
|
[38] |
Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH, Byun DS, Nasser S, Arango D, Shin J, Klampfer L, Augenlicht LH, Perez-Soler R, Mariadason JM. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 2008; 68(6): 1953–1961
CrossRef
Pubmed
Google scholar
|
[39] |
Zhang W, Gordon M, Press OA, Rhodes K, Vallböhmer D, Yang DY, Park D, Fazzone W, Schultheis A, Sherrod AE, Iqbal S, Groshen S, Lenz HJ. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with cetuximab. Pharmacogenet Genomics 2006; 16(7): 475–483
CrossRef
Pubmed
Google scholar
|
[40] |
Kong S, Amos CI, Luthra R, Lynch PM, Levin B, Frazier ML. Effects of cyclin D1 polymorphism on age of onset of hereditary nonpolyposis colorectal cancer. Cancer Res 2000; 60(2): 249–252
Pubmed
|
[41] |
Koehler BC, Scherr AL, Lorenz S, Urbanik T, Kautz N, Elssner C, Welte S, Bermejo JL, Jäger D, Schulze-Bergkamen H. Beyond cell death — antiapoptotic Bcl-2 proteins regulate migration and invasion of colorectal cancer cells in vitro. PLoS One 2013; 8(10): e76446
CrossRef
Pubmed
Google scholar
|
[42] |
Qi QR, Yang ZM. Regulation and function of signal transducer and activator of transcription 3. World J Biol Chem 2014; 5(2): 231–239
Pubmed
|
/
〈 | 〉 |