Search-and-replace editing of genetic information
Yao LIU, Xingxu HUANG, Xiaolong WANG
Search-and-replace editing of genetic information
[1] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef
Pubmed
Google scholar
|
[2] |
Komor A C, Badran A H, Liu D R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1–2): 20–36
CrossRef
Pubmed
Google scholar
|
[3] |
Ceccaldi R, Rondinelli B, D’Andrea A D. Repair pathway choices and consequences at the double-strand break. Trends in Cell Biology, 2016, 26(1): 52–64
CrossRef
Pubmed
Google scholar
|
[4] |
Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
CrossRef
Pubmed
Google scholar
|
[5] |
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
CrossRef
Pubmed
Google scholar
|
[6] |
Gehrke J M, Cervantes O, Clement M K, Wu Y, Zeng J, Bauer D E, Pinello L, Joung J K. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature Biotechnology, 2018, 36(10): 977–982
CrossRef
Pubmed
Google scholar
|
[7] |
Kim Y B, Komor A C, Levy J M, Packer M S, Zhao K T, Liu D R. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35(4): 371–376
CrossRef
Pubmed
Google scholar
|
[8] |
Koblan L W, Doman J L, Wilson C, Levy J M, Tay T, Newby G A, Maianti J P, Raguram A, Liu D R. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36(9): 843–846
CrossRef
Pubmed
Google scholar
|
[9] |
Komor A C, Zhao K T, Packer M S, Gaudelli N M, Waterbury A L, Koblan L W, Kim Y B, Badran A H, Liu D R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774
|
[10] |
Li J, Liu Z, Huang S, Wang X, Li G, Xu Y, Yu W, Chen S, Zhang Y, Ma H, Ke Z, Chen J, Sun Q, Huang X. Efficient base editing in G/C-rich regions to model androgen insensitivity syndrome. Cell Research, 2019, 29(2): 174–176
CrossRef
Pubmed
Google scholar
|
[11] |
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
CrossRef
Pubmed
Google scholar
|
[12] |
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes W C. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 2014, 11(4): 399–402
CrossRef
Pubmed
Google scholar
|
[13] |
Young A I, Benonisdottir S, Przeworski M, Kong A. Deconstructing the sources of genotype-phenotype associations in humans. Science, 2019, 365(6460): 1396–1400
CrossRef
Pubmed
Google scholar
|
[14] |
Jenko J, Gorjanc G, Cleveland M A, Varshney R K, Whitelaw C B, Woolliams J A, Hickey J M. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics, Selection, Evolution., 2015, 47(1): 55
CrossRef
Pubmed
Google scholar
|
[15] |
Li G, Zhou S, Li C, Cai B, Yu H, Ma B, Huang Y, Ding Y, Liu Y, Ding Q, He C, Zhou J, Wang Y, Zhou G, Li Y, Yan Y, Hua J, Petersen B, Jiang Y, Sonstegard T, Huang X, Chen Y, Wang X. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS Journal, 2019, 286(23): 4675–4692
CrossRef
Pubmed
Google scholar
|
[16] |
Yin K, Gao C, Qiu J L. Progress and prospects in plant genome editing. Nature Plants, 2017, 3(8): 17107
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |