Journal home Browse Online first

Online first

The manuscripts published below will continue to be available from this page until they are assigned to an issue.
  • Select all
  • REVIEW
    Zhizhi WANG, Pu TANG, Min SHI, Jianhua HUANG, Xuexin CHEN
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021427

    ● Most entomophagous arthropods consume nectar or pollen as alternative diets.

    ● The attractive of floral resource with different traits varies in a wide degree.

    ● Floral resource plays positive effects on not only entomophagous insects but also agricultural biodiversity, multiple ecosystem services and crop production.

    There is a growing demand for high-quality agricultural products and more countries have adopted landscape management by sowing flowering plants in agricultural fields as an important branch of conservation biological control. However, there has been less concern over the interactions and trade-offs between floral plants and entomophagous arthropods. This paper review progress in pollen/nectar feeding habits of entomophagous insects including parasitoids and predators which are important natural enemies of crop pests in agricultural fields. Factors that influence the preference of different guilds of natural enemies are reviewed to guide the selection of flowering plants in conservation biological control practices. Most studies find that floral resources have positive effects on both biological traits of natural enemies and their abundance and diversity, and this is believed to contribute greatly to pest control. Furthermore, the potential impacts of floral resources on crop yields are also discussed with an emphasis on a guild of entomophagous insects that provides both pest control and pollination services.

  • PERSPECTIVE
    Jingyuan XIA, Alexandre LATCHININSKY, Buyung HADI, Maged ELKAHKY
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021426

    Plant pests and diseases have significant negative impacts on global food security, world trade and rural livelihoods. Climate change exacerbates these impacts in certain parts of the world. Overreliance on pesticides as the primary tool for plant pest management leads to problems such as pesticide resistance and pest resurgence. Environmental and food safety concerns are also associated with overuse of pesticides in crop production. There is clearly a need for a shift in pest management strategies and practices globally. Optimization of structures and functions in crop production agroecosystems through soil conservation practices and cropping diversification can improve pest regulation services provided in the systems. Prioritization of safer alternatives and practices in the IPM pyramid, such as resistant varieties and biopesticides, helps minimize the use of potentially risky agricultural inputs such as synthetic pesticides. Investment is needed to boost the development of innovative green technologies and practices. Production, distribution, use and regulatory capacities need to be strengthened to facilitate large-scale adoption of green technologies and practices. Finally, policy, financial and market instruments should be wielded to provide an enabling environment for the transformation to sustainable plant pest and disease management strategies and practices worldwide.

  • REVIEW
    Philippe YAMEOGO, Saturnin ZIGANI, Xiaoqiang JIAO, Hongyan ZHANG, Junling ZHANG
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021422

    ● Constraints in cultivation and production of pearl millet in West Africa are summarized.

    ● Production systems and fertilization methods in pearl millet production are highlighted.

    ● Sustainable production needs integrated cropping systems and fertilizer use efficiency.

    ● A holistic approach is required to establish a strong collaboration among rural actors.

    West African countries are among the larger global millet producers but have low yields mainly due to the low quality of their marginal soils. The objectives of this work were to analyze the benefits and constraints of pearl millet production, to summarize the impact of different cropping systems and fertilization modes while proposing a holistic approach for sustainable production. The major constraints on millet yields are low rates or absence of fertilizers, unsuitable cropping systems, and the proliferation of pests and diseases. Intercropping with cowpea is a widely used cropping system in addition to crop rotation, monocropping and agroforestry systems. Microdosing is the best fertilization mode for West African smallholders. It is concluded that integrated systems (breeding new cultivars, intercropping and microdosing) in tied ridges or infiltration pit practices, sustained by the implementation of innovative approaches such as the ‘Science and Technology Backyards’ from China are a promising approach for increasing pearl millet production. In addition, policies such as land protection of the farmers and subsidies of inputs from the government and the effective involvement of farmers and extension officers are necessary in sustaining millet production in West Africa.

  • REVIEW
    Xiangyang LI, Linhong JIN, Zhuo CHEN, Baoan SONG
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021424

    ● Application of plant defense inducers against tea diseases.

    ● Application of natural enemies against insect pests.

    ● Application of Trifolium repens against weeds.

    The application and development of ‘green’ preventive technologies in tea plantations is an important means of ensuring tea quality and ecological safety. Ecological, agronomic and biological controls are the main preventive measures used in Guizhou Province. This paper summarizes the ‘green’ preventive technologies being applied in Guizhou tea plantations, including the use of plant defense inducers to regulate tea plant responses to pathogens, natural enemies to control pest species causing damage to shoots and Trifolium repens to control the main weed species. In addition, it summarizes the integrated ‘green’ preventive technologies being used in Guizhou and provides a foundation for the ecological maintenance of tea plantations.

  • RESEARCH ARTICLE
    Monica K. KANSIIME, Idah MUGAMBI, Harrison RWARE, Christine ALOKIT, Caroline ALIAMO, Feng ZHANG, Jakob LATZKO, Puyun YANG, Daniel KARANJA, Dannie ROMNEY
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021423

    ● Seventy-eight percent of farmers accessed extension and advisory services from electronic sources dominated by radio.

    ● Low digital literacy and high cost of internet and digital devices were key barriers to digital extension and advisory services use.

    ● Farmers need information to make decisions, e.g., fertilizers, seeds or pesticides to use.

    ● Integrating digital and face-to-face methods can enhance inclusive scaling of extension activities.

    An assessment of the challenges and capacity gaps in smallholder access to digital extension and advisory services (EAS) was made by surveying 197 female and 239 male farmers in Kenya and Uganda. Non-digital extension approaches remain dominant but at least 78% of farmers accessed EAS from electronic sources dominated by radio. This is attributed to the fact that ownership of radios was more widespread than of other digital devices. Challenges that particularly limit the use of digital services included low digital literacy and prohibitive cost of internet and mobile devices. Female and elderly farmers were more likely to report these challenges than their counterparts. Logistic regression model results show that ownership of digital devices, participation in post-production activities, and access to extension were enablers of digital EAS use. Farmers mentioned gaps in obtaining information on crop pest/disease diagnosis and management, fertilizer application, pesticide safety and quality seed. Given the diversity in smallholder technological capabilities and information needs, the recommendations made include integration of digital communication within multimode advisory services that use different but linked communication channels, continued farmer digital innovation capacity enhancement, and participatory design approaches that deliver relevant and actionable information for inclusive scaling of extension activities.

  • RESEARCH ARTICLE
    Cathryn A. O'SULLIVAN, Elliott G. DUNCAN, Margaret M. ROPER, Alan E. RICHARDSON, John A. KIRKEGAARD, Mark B. PEOPLES
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021421

    ● First evidence of BNI capacity in canola.

    ● BNI level was higher in canola cv. Hyola 404RR than in B. humidicola, the BNI positive control.

    ● BNI in canola may explain increased N immobilization and mineralization rates following a canola crop which may have implications for N management in rotational farming systems that include canola.

    A range of plant species produce root exudates that inhibit ammonia-oxidizing microorganisms. This biological nitrification inhibition (BNI) capacity can decrease N loss and increase N uptake from the rhizosphere. This study sought evidence for the existence and magnitude of BNI capacity in canola ( Brassica napus). Seedlings of three canola cultivars, Brachiaria humidicola (BNI positive) and wheat ( Triticum aestivum) were grown in a hydroponic system. Root exudates were collected and their inhibition of the ammonia oxidizing bacterium, Nitrosospira multiformis, was tested. Subsequent pot experiments were used to test the inhibition of native nitrifying communities in soil. Root exudates from canola significantly reduced nitrification rates of both N. multiformis cultures and native soil microbial communities. The level of nitrification inhibition across the three cultivars was similar to the well-studied high-BNI species B. humidicola. BNI capacity of canola may have implications for the N dynamics in farming systems and the N uptake efficiency of crops in rotational farming systems. By reducing nitrification rates canola crops may decrease N losses, increase plant N uptake and encourage microbial N immobilization and subsequently increase the pool of organic N that is available for mineralization during the following cereal crops.

  • PERSPECTIVE
    Thierry LONHIENNE, Mario Daniel GARCIA, Yu Shang LOW, Luke W. GUDDAT
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021420
  • PERSPECTIVE
    Li ZHANG, Jialin CUI, Qi HE, Qing X. LI
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021419
  • PERSPECTIVE
    Govind T. GUJAR, Rajinder PESHIN
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021415
  • REVIEW
    Qiulin WU, Juan ZENG, Kongming WU
    Frontiers of Agricultural Science and Engineering, https://doi.org/10.15302/J-FASE-2021411

    ● Crop pests are a major factor restricting agricultural production in China.

    ● The National Monitoring and Early Warning System (NMEWS) was established > 40 years ago.

    ● Application of NMEWS has increased national capability to tackle pests.

    The importance of food security, especially in combating the problem of acute hunger, has been underscored as a key component of sustainable development. Considering the major challenge of rapidly increasing demands for both food security and safety, the management and control of major pests is urged to secure supplies of major agricultural products. However, owing to global climate change, biological invasion (e.g., fall armyworm), decreasing agricultural biodiversity, and other factors, a wide range of crop pest outbreaks are becoming more frequent and serious, making China, one of the world’s largest country in terms of agricultural production, one of the primary victims of crop yield loss and the largest pesticide consumer in the world. Nevertheless, the use of science and technology in monitoring and early warning of major crop pests provides better pest management and acts as a fundamental part of an integrated plant protection strategy to achieve the goal of sustainable development of agriculture. This review summarizes the most fundamental information on pest monitoring and early warning in China by documenting the developmental history of research and application, Chinese laws and regulations related to plant protection, and the National Monitoring and Early Warning System, with the purpose of presenting the Chinese model as an example of how to promote regional management of crop pests, especially of cross border pests such as fall armyworm and locust, by international cooperation across pest-related countries.