Genetic study and molecular breeding for high phosphorus use efficiency in maize

Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU

PDF(556 KB)
PDF(556 KB)
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (4) : 366-379. DOI: 10.15302/J-FASE-2019278
REVIEW
REVIEW

Genetic study and molecular breeding for high phosphorus use efficiency in maize

Author information +
History +

Abstract

Phosphorus is the second most important macronutrient after nitrogen and it has many vital functions in the life of plants. Most soils have a low available P content, which has become a key limiting factor for increasing crop production. Also, low P use efficiency (PUE) of crops in conjunction with excessive application of P fertilizers has resulted in serious environmental problems. Thus, dissecting the genetic architecture of crop PUE, mining related quantitative trait loci (QTL) and using molecular breeding methods to improve high PUE germplasm are of great significance and serve as an efficient approach for the development of sustainable agriculture. In this review, molecular and phenotypic characteristics of maize inbred lines with high PUE, related QTL and genes as well as low-P responses are summarized. Based on this, a breeding strategy applying genomic selection as the core, and integrating the existing genetic information and molecular breeding techniques is proposed for breeding high PUE maize inbred lines and hybrids.

Keywords

maize / phosphorus use efficiency / quantitative trait loci / genetic study / molecular breeding / genomic selection

Cite this article

Download citation ▾
Dongdong LI, Meng WANG, Xianyan KUANG, Wenxin LIU. Genetic study and molecular breeding for high phosphorus use efficiency in maize. Front. Agr. Sci. Eng., 2019, 6(4): 366‒379 https://doi.org/10.15302/J-FASE-2019278

References

[1]
Maharajan T, Ceasar S A, Ajeesh krishna T P, Ramakrishnan M, Duraipandiyan V, Naif Abdulla A D, Ignacimuthu S, Ajeesh krishna T P, Ramakrishnan M, Duraipandiyan V, Naif Abdulla A D, Ignacimuthu S. Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breeding, 2018, 137(1): 10–26
CrossRef Google scholar
[2]
Pang J, Ryan M H, Lambers H, Siddique K H. Phosphorus acquisition and utilisation in crop legumes under global change. Current Opinion in Plant Biology, 2018, 45(Pt B): 248–254
CrossRef Pubmed Google scholar
[3]
Mapare S V, Yu P L, Sarkar A, Mukhopadhyay S C. A review of sensor technology for in-field phosphate monitoring. In: Seventh International Conference on Sensing Technology. Wellington, New Zealand: IEEE, 2013, 411–418
[4]
Ruttenberg K C. The global phosphorus cycle. Treatise on geochemistry, 2003, 8: 585–643
[5]
George T S, Giles C D, Menezes-Blackburn D, Condron L M, Gama-Rodrigues A C, Jaisi D, Lang F, Neal A L, Stutter M I, Almeida D S, Bol R, Cabugao K G, Celi L, Cotner J B, Feng G, Goll D S, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson A E, Tamburini F, Shand C A, Lumsdon D G, Zhang H, Blackwell M S A, Wearing C, Mezeli M M, Almås R, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley C A, Bruulsema T W, Ciais P, Cozzolino V, Duran P C, Mora M L, de Menezes A B, Dodd R J, Dunfield K, Engl C, Frazão J J, Garland G, González Jiménez J L, Graca J, Granger S J, Harrison A F, Heuck C, Hou E Q, Johnes P J, Kaiser K, Kjær H A, Klumpp E, Lamb A L, Macintosh K A, Mackay E B, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón C P, Nelson L A, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith A C, Smits M M, Sobarzo J A, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth P M. Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427(1–2): 191–208
CrossRef Google scholar
[6]
Negm A A, Abouzeid A Z M. Utilization of solid wastes from phosphate processing plants. Physicochemical Problems of Mineral Processing, 2008, 42: 5–16
[7]
Dodds W K, Whiles M R. Freshwater Ecology. 2 ed. Chapter 14: Nitrogen, sulfur, phosphorus, and other nutrients. 2012: 345–373. doi: 10.1016/B978-0-12-374724-2.00014-3
[8]
Gerke J. The acquisition of phosphate by higher plants: effect of carboxylate release by the roots. A critical review. Journal of Plant Nutrition and Soil Science, 2015, 178(3): 351–364
CrossRef Google scholar
[9]
Wu P, Shou H, Xu G, Lian X. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Current Opinion in Plant Biology, 2013, 16(2): 205–212
CrossRef Pubmed Google scholar
[10]
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423–447
CrossRef Google scholar
[11]
Lassen R, Tjell J, Hansen J. Phosphorus recovery from sewage for agriculture. Waste Management & Research, 1984, 2(4): 369–378
CrossRef Google scholar
[12]
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3): 997–1005
CrossRef Pubmed Google scholar
[13]
Gamuyao R, Chin J H, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza E M, Wissuwa M, Heuer S. The protein kinase PSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature, 2012, 488(7412): 535–539
CrossRef Pubmed Google scholar
[14]
Weikard H P. Phosphorus recycling and food security in the long run: a conceptual modelling approach. Food Security, 2016, 8(2): 405–414
CrossRef Google scholar
[15]
Zhang Y, Chen F J, Li X X, Li C J. Higher leaf area and post-silking P uptake conferred by introgressed DNA segments in the backcross maize line 224. Field Crops Research, 2013, 151: 78–84
CrossRef Google scholar
[16]
Baker A, Ceasar S A, Palmer A J, Paterson J B, Qi W, Muench S P, Baldwin S A. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. Journal of Experimental Botany, 2015, 66(12): 3523–3540
CrossRef Pubmed Google scholar
[17]
Maharajan T, Ceasar S A, Ajeesh krishna T P, Ramakrishnan M, Duraipandiyan V, Naif Abdulla A D, Ignacimuthu S. Utilization of molecular markers for improving the phosphorus efficiency in crop plants. Plant Breeding, 2018, 137(1): 10–26
CrossRef Google scholar
[18]
Liu Z, Gao K, Shan S, Gu R, Wang Z, Craft E J, Mi G, Yuan L, Chen F. Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Frontiers of Plant Science, 2017, 8: 436
CrossRef Pubmed Google scholar
[19]
Khaldun A B M, Islam M T, Sheikh B, Rahman M. Integration of omics approaches for low-phosphorus tolerance in maize. In: Zargar S M, Vandna R, eds. Plant omics and crop breeding. Palm Bay, USA: Apple Academic Press, 2017, 260–287
[20]
Wang X R, Shen J B, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Science, 2010, 179(4): 302–306
CrossRef Google scholar
[21]
Yuan Y, Gao M, Zhang M, Zheng H, Zhou X, Guo Y, Zhao Y, Kong F, Li S. QTL mapping for phosphorus efficiency and morphological traits at seedling and maturity stages in wheat. Frontiers of Plant Science, 2017, 8: 614
CrossRef Pubmed Google scholar
[22]
Mendes F F, Guimarães L J M, Souza J C, Guimarães P E O, Magalhaes J V, Garcia A A F, Parentoni S N, Guimaraes C T. Genetic architecture of phosphorus use efficiency in tropical maize cultivated in a low-P soil. Crop Science, 2014, 54(4): 1530–1538
CrossRef Google scholar
[23]
Morais de Sousa S, Clark R T, Mendes F F, Carlos De Oliveira A, Vilaça De Vasconcelos M J, Parentoni S N, Kochian L V, Guimarães C T, Magalhães J V. A role for root morphology and related candidate genes in P acquisition efficiency in maize. Functional Plant Biology, 2012, 39(11): 925–935
CrossRef Google scholar
[24]
López-Arredondo D L, Leyva-González M A, González-Morales S I, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65(1): 95–123
CrossRef Pubmed Google scholar
[25]
Wang W, Ding G D, White P J, Wang X H, Jin K M, Xu F S, Shi L. Mapping and cloning of quantitative trait loci for phosphorus efficiency in crops: opportunities and challenges. Plant and Soil, 2019, 439(1–2): 91–112
CrossRef Google scholar
[26]
Gu R, Chen F, Long L, Cai H, Liu Z, Yang J, Wang L, Li H, Li J, Liu W, Mi G, Zhang F, Yuan L. Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Journal of Genetics and Genomics, 2016, 43(11): 663–672
CrossRef Pubmed Google scholar
[27]
Parentoni S N, Souza Júnior C L. Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesquisa Agropecuária Brasileira, 2008, 43(7): 893–901
CrossRef Google scholar
[28]
Manske G G B, Ortiz-Monasterio J I, van Ginkel M, González R M, Fischer R A, Rajaram S, Vlek P L G. Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. European Journal of Agronomy, 2001, 14(4): 261–274
CrossRef Google scholar
[29]
Galindo-Castañeda T, Brown K M, Lynch J P. Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize. Plant, Cell & Environment, 2018, 41(7): 1579–1592
CrossRef Pubmed Google scholar
[30]
Bayuelo-Jiménez J S, Gallardo-Valdéz M, Pérez-Decelis V A, Magdaleno-Armas L, Ochoa I, Lynch J P. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Research, 2011, 121(3): 350–362
CrossRef Google scholar
[31]
Miguel M A, Widrig A, Vieira R F, Brown K M, Lynch J P. Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). Annals of Botany, 2013, 112(6): 973–982
CrossRef Pubmed Google scholar
[32]
Devaiah B N, Nagarajan V K, Raghothama K G. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology, 2007, 145(1): 147–159
CrossRef Pubmed Google scholar
[33]
Rouached H, Arpat A B, Poirier Y. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Molecular Plant, 2010, 3(2): 288–299
CrossRef Pubmed Google scholar
[34]
Baek D, Park H C, Kim M C, Yun D J. The role of Arabidopsis MYB2 in miR399f-mediated phosphate-starvation response. Plant Signaling & Behavior, 2013, 8(3): e23488
CrossRef Pubmed Google scholar
[35]
Zhang K, Liu H, Song J, Wu W, Li K, Zhang J. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling. BMC Plant Biology, 2016, 16(1): 129
CrossRef Pubmed Google scholar
[36]
Bera T, Mclamore E S, Wasik B, Rathinasabapathi B, Liu G. Identification of a maize (Zea mays L.) inbred line adapted to low-P conditions via analyses of phosphorus utilization, root acidification, and calcium influx. Journal of Plant Nutrition and Soil Science, 2018, 181(2): 275–286
CrossRef Google scholar
[37]
Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L. Root architecture responses: in search of phosphate. Plant Physiology, 2014, 166(4): 1713–1723
CrossRef Pubmed Google scholar
[38]
Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLOS Genetics, 2010, 6(9): e1001102
CrossRef Pubmed Google scholar
[39]
Cai H G, Chu Q, Gu R L, Yuan L X, Liu J C, Zhang X Z, Chen F J, Mi G H, Zhang F S. Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding, 2012, 131(4): 502–510
CrossRef Google scholar
[40]
Xu C, Zhang H, Sun J, Guo Z, Zou C, Li W X, Xie C, Huang C, Xu R, Liao H, Wang J, Xu X, Wang S, Xu Y. Genome-wide association study dissects yield components associated with low-phosphorus stress tolerance in maize. Theoretical and Applied Genetics, 2018, 131(8): 1699–1714
CrossRef Pubmed Google scholar
[41]
Zhang H, Xu R, Xie C, Huang C, Liao H, Xu Y, Wang J, Li W X. Large-scale evaluation of maize germplasm for low-phosphorus tolerance. PLoS One, 2015, 10(5): e0124212
CrossRef Pubmed Google scholar
[42]
Pan L M, Yin Z Q, Huang Y Q, Chen J T, Zhu L Y, Zhao Y F, Guo J J. QTL for maize grain yield identified by QTL mapping in six environments and consensus loci for grain weight detected by meta-analysis. Plant Breeding, 2017, 136(6): 820–833
CrossRef Google scholar
[43]
Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M. QTL alignment for seed yield and yield related traits in Brassica napus. Frontiers of Plant Science, 2018, 9: 1127
CrossRef Pubmed Google scholar
[44]
Matsubara K, Yonemaru J I, Kobayashi N, Ishii T, Yamamoto E, Mizobuchi R, Tsunematsu H, Yamamoto T, Kato H, Yano M. A follow-up study for biomass yield QTLs in rice. PLoS One, 2018, 13(10): e0206054
CrossRef Pubmed Google scholar
[45]
Calderón-Vázquez C, Sawers R J H, Herrera-Estrella L. Phosphate deprivation in maize: genetics and genomics. Plant Physiology, 2011, 156(3): 1067–1077
CrossRef Pubmed Google scholar
[46]
Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Journal of Experimental Botany, 2008, 59(9): 2479–2497
CrossRef Pubmed Google scholar
[47]
Nagy R, Vasconcelos M J, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama K G, Bucher M. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 2006, 8(2): 186–197
CrossRef Pubmed Google scholar
[48]
Pei L, Jin Z, Li K, Yin H, Wang J, Yang A. Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiology and Biochemistry, 2013, 70: 221–234
CrossRef Pubmed Google scholar
[49]
Du Q, Wang K, Zou C, Xu C, Li W X. The PILNCR1-miR399 regulatory module is important for low-phosphate tolerance in maize. Plant Physiology, 2018, 177(4): 1743–1753
CrossRef Pubmed Google scholar
[50]
Li K, Xu C, Li Z, Zhang K, Yang A, Zhang J. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant Journal, 2008, 55(6): 927–939
CrossRef Pubmed Google scholar
[51]
Li K, Xu C, Fan W, Zhang H, Hou J, Yang A, Zhang K. Phosphoproteome and proteome analyses reveal low-phosphate mediated plasticity of root developmental and metabolic regulation in maize (Zea mays L.). Plant Physiology and Biochemistry, 2014, 83: 232–242
CrossRef Pubmed Google scholar
[52]
Ganie A H, Ahmad A, Pandey R, Aref I M, Yousuf P Y, Ahmad S, Iqbal M. Metabolite profiling of low-P tolerant and low-P sensitive maize genotypes under phosphorus starvation and restoration conditions. PLoS One, 2015, 10(6): e0129520
CrossRef Pubmed Google scholar
[53]
Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Salvo S, Sanchez Villeda H, da Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325(5941): 714–718
CrossRef Pubmed Google scholar
[54]
Reiter R S, Coors J G, Sussman M R, Gabelman W H. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theoretical and Applied Genetics, 1991, 82(5): 561–568
CrossRef Pubmed Google scholar
[55]
Kaeppler S M, Parke J L, Mueller S M, Senior L, Stuber C, Tracy W F. Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science, 2000, 40(2): 358–364
CrossRef Google scholar
[56]
Zhu J, Kaeppler S M, Lynch J P. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theoretical and Applied Genetics, 2005, 111(4): 688–695
CrossRef Pubmed Google scholar
[57]
Zhu J, Kaeppler S M, Lynch J P. Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant and Soil, 2005, 270(1): 299–310
CrossRef Google scholar
[58]
Zhu J, Mickelson S M, Kaeppler S M, Lynch J P. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theoretical and Applied Genetics, 2006, 113(1): 1–10
CrossRef Pubmed Google scholar
[59]
Chen J Y, Xu L, Cai Y L, Xu J. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant and Soil, 2008, 313(1–2): 251–266
CrossRef Google scholar
[60]
Chen J Y, Xu L, Cai Y L, Xu J. Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica, 2009, 167(2): 245–252
CrossRef Google scholar
[61]
Li M, Guo X H, Zhang M, Wang X P, Zhang G D, Tian Y C, Wang Z L. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Science, 2010, 178(5): 454–462
CrossRef Google scholar
[62]
Chen J Y, Cai Y L, Xu L, Wang J G, Zhang W L, Wang G Q, Xu D L, Chen T Q, Lu X G, Sun H Y, Huang A Y, Liang Y, Dai G L, Qin H N, Huang Z C, Zhu Z J, Yang Z G, Xu J, Kuang S F. Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites. Frontiers of Agriculture in China, 2011, 5(2): 152–161
CrossRef Google scholar
[63]
Chen J Y, Xu L. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages. Frontiers of Agriculture in China, 2011, 5(3): 284–290
CrossRef Google scholar
[64]
Chen J Y, Xu L. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.). Frontiers of Agriculture in China, 2011, 5(4): 456–462
CrossRef Google scholar
[65]
Cai H G, Chu Q, Yuan L X, Liu J C, Chen X H, Chen F J, Mi G H, Zhang F S. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 2012, 30(1): 251–266
CrossRef Google scholar
[66]
Zhang G, Wang X, Wang B, Tian Y, Li M, Nie Y, Peng Q, Wang Z. Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theoretical and Applied Genetics, 2013, 126(6): 1545–1553
CrossRef Pubmed Google scholar
[67]
Qiu H B, Mei X P, Liu C X, Wang J G, Wang G Q, Wang X, Liu Z, Cai Y L. Fine mapping of quantitative trait loci for acid phosphatase activity in maize leaf under low phosphorus stress. Molecular Breeding, 2013, 32(3): 629–639
CrossRef Google scholar
[68]
Qiu H B, Liu C X, Yu T T, Mei X P, Wang G Q, Wang J G, Cai Y L. Identification of QTL for acid phosphatase activity in root and rhizosphere soil of maize under low phosphorus stress. Euphytica, 2014, 197(1): 133–143
CrossRef Google scholar
[69]
Ni J J, Wu P, Senadhira D, Huang N. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1998, 97(8): 1361–1369
CrossRef Google scholar
[70]
Wissuwa M, Wegner J, Ae N, Yano M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theoretical and Applied Genetics, 2002, 105(6–7): 890–897
CrossRef Pubmed Google scholar
[71]
Xiao Y, Liu H, Wu L, Warburton M, Yan J. Genome-wide association studies in maize: praise and stargaze. Molecular Plant, 2017, 10(3): 359–374
CrossRef Pubmed Google scholar
[72]
Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton M L, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43–50
CrossRef Pubmed Google scholar
[73]
Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48(10): 1233–1241
CrossRef Pubmed Google scholar
[74]
Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLOS Genetics, 2014, 10(9): e1004573
CrossRef Pubmed Google scholar
[75]
Luo B W, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q X, Ren Z Y, Lin H J, Wu Y Q, Shen Y O, Zhang S Z, Wu L, Liu D, Pan G T, Rong T Z, Gao S B. Combining metabolite profiling with genome-wide association study to reveal response mechanisms of Zea mays seedlings under low-phosphorus conditions. Plant Journal, 2019, 97: 947–969
CrossRef Pubmed Google scholar
[76]
Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178(1): 539–551
CrossRef Pubmed Google scholar
[77]
Huang B E, Verbyla K L, Verbyla A P, Raghavan C, Singh V K, Gaur P, Leung H, Varshney R K, Cavanagh C R. MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 2015, 128(6): 999–1017
CrossRef Pubmed Google scholar
[78]
Bandillo N, Raghavan C, Muyco P A, Sevilla M A, Lobina I T, Dilla-Ermita C J, Tung C W, McCouch S, Thomson M, Mauleon R, Singh R K, Gregorio G, Redoña E, Leung H. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice, 2013, 6(1): 11
CrossRef Pubmed Google scholar
[79]
Holland J B. MAGIC maize: a new resource for plant genetics. Genome Biology, 2015, 16(1): 163
CrossRef Pubmed Google scholar
[80]
Dell’Acqua M, Gatti D M, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing A L, Aung H H, Nelissen H, Baute J, Frascaroli E, Churchill G A, Inzé D, Morgante M, Pè M E. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 2015, 16(1): 167
CrossRef Pubmed Google scholar
[81]
Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan M S, Luo Y, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan W, Liu N, Wang H, Chen G, Cai Y, Xu G, Wang W, Zheng D, Yan J. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016, 210(3): 1095–1106
CrossRef Pubmed Google scholar
[82]
Liu W X, Leiser W L, Reif J C, Tucker M R, Losert D, Weissmann S, Hahn V, Maurer H P, Würschum T. Multiple-line cross QTL mapping for grain yield and thousand kernel weight in triticale. Plant Breeding, 2016, 135(5): 567–573
CrossRef Google scholar
[83]
Zhang L T, Li J, Rong T Z, Gao S B, Wu F K, Xu J, Li M L, Cao M J, Wang J, Hu E L, Liu Y X, Lu Y L. Large-scale screening maize germplasm for low-phosphorus tolerance using multiple selection criteria. Euphytica, 2014, 197(3): 435–446
CrossRef Google scholar
[84]
Liu Z, Liu X, Craft E J, Yuan L, Cheng L, Mi G, Chen F. Physiological and genetic analysis for maize root characters and yield in response to low phosphorus stress. Breeding Science, 2018, 68(2): 268–277
CrossRef Pubmed Google scholar
[85]
Ige S A, Bello O B, Alake O. Combining ability and heterosis of tolerance to low soil nitrogen in tropical maize cultivars derived from two breeding eras. Open Agriculture, 2018, 3(1): 339–347
CrossRef Google scholar
[86]
Narang R A, Altmann T. Phosphate acquisition heterosis in Arabidopsis thaliana: a morphological and physiological analysis. Plant and Soil, 2001, 234(1): 91–97
CrossRef Google scholar
[87]
Nadeem M A, Nawaz M A, Shahid M Q, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch F S. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology, Biotechnological Equipment, 2018, 32(2): 261–285
CrossRef Google scholar
[88]
Devaiah B N, Madhuvanthi R, Karthikeyan A S, Raghothama K G. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant, 2009, 2(1): 43–58
CrossRef Pubmed Google scholar
[89]
Huang K L, Ma G J, Zhang M L, Xiong H, Wu H, Zhao C Z, Liu C S, Jia H X, Chen L, Kjorven J O, Li X B, Ren F. The ARF7 and ARF19 transcription factors positively regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis roots. Plant Physiology, 2018, 178(1): 413–427
CrossRef Pubmed Google scholar
[90]
Chin J H, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiology, 2011, 156(3): 1202–1216
CrossRef Pubmed Google scholar
[91]
Pérez-Torres C A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell, 2008, 20(12): 3258–3272
CrossRef Pubmed Google scholar
[92]
Zhang H, Uddin M S, Zou C, Xie C, Xu Y, Li W X. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. Journal of Integrative Plant Biology, 2014, 56(3): 262–270
CrossRef Pubmed Google scholar
[93]
Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11): 2281–2308
CrossRef Pubmed Google scholar
[94]
Svitashev S, Schwartz C, Lenderts B, Young J K, Mark Cigan A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7(1): 13274
CrossRef Pubmed Google scholar
[95]
Char S N, Neelakandan A K, Nahampun H, Frame B, Main M, Spalding M H, Becraft P W, Meyers B C, Walbot V, Wang K, Yang B. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 2017, 15(2): 257–268
CrossRef Pubmed Google scholar
[96]
Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819–1829
Pubmed
[97]
Hayes B J, Bowman P J, Chamberlain A C, Verbyla K, Goddard M E. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics, Selection, Evolution, 2009, 41(1): 51
CrossRef Pubmed Google scholar
[98]
Bernardo R, Yu J. Prospects for genomewide selection for quantitative traits in maize. Crop Science, 2007, 47(3): 1082–1090
CrossRef Google scholar
[99]
Gaynor R C, Gorjanc G, Bentley A R, Ober E S, Howell P, Jackson R, Mackay I J, Hickey J M. A two-part strategy for using genomic selection to develop inbred lines. Crop Science, 2017, 57(5): 2372–2386
CrossRef Google scholar
[100]
Riedelsheimer C, Endelman J B, Stange M, Sorrells M E, Jannink J L, Melchinger A E. Genomic predictability of interconnected biparental maize populations. Genetics, 2013, 194(2): 493–503
CrossRef Pubmed Google scholar
[101]
Schopp P, Müller D, Wientjes Y C J, Melchinger A E. Genomic prediction within and across biparental families: means and variances of prediction accuracy and usefulness of deterministic equations. G3: Genes, Genomes, Genetics, 2017, 7(11): 3571–3586
CrossRef Pubmed Google scholar
[102]
Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna B M, Vargas M, San Vicente F, Crossa J. Rapid cycling genomic selection in a multiparental tropical maize population. G3: Genes, Genomes, Genetics, 2017, 7(7): 2315–2326
CrossRef Pubmed Google scholar
[103]
Lorenzana R E, Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theoretical and Applied Genetics, 2009, 120(1): 151–161
CrossRef Pubmed Google scholar
[104]
Windhausen V S, Atlin G N, Hickey J M, Crossa J, Jannink J L, Sorrells M E, Raman B, Cairns J E, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger A E. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. Genetics, 2012, 2(11): 1427–1436
CrossRef Pubmed Google scholar
[105]
Albrecht T, Auinger H J, Wimmer V, Ogutu J O, Knaak C, Ouzunova M, Piepho H P, Schön C C. Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years. Theoretical and Applied Genetics, 2014, 127(6): 1375–1386
CrossRef Pubmed Google scholar
[106]
Massman J M, Gordillo A, Lorenzana R E, Bernardo R. Genomewide predictions from maize single-cross data. Theoretical and Applied Genetics, 2013, 126(1): 13–22
CrossRef Pubmed Google scholar
[107]
Zhong S, Dekkers J C M, Fernando R L, Jannink J L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 2009, 182(1): 355–364
CrossRef Pubmed Google scholar
[108]
Daetwyler H D, Pong-Wong R, Villanueva B, Woolliams J A. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 2010, 185(3): 1021–1031
CrossRef Pubmed Google scholar
[109]
Clark S A, Hickey J M, Daetwyler H D, van der Werf J H. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics, Selection, Evolution, 2012, 44(1): 4
CrossRef Pubmed Google scholar
[110]
Wang Q, Yu Y, Yuan J, Zhang X, Huang H, Li F, Xiang J. Effects of marker density and population structure on the genomic prediction accuracy for growth trait in Pacific white shrimp Litopenaeus vannamei. BMC Genetics, 2017, 18(1): 45
CrossRef Pubmed Google scholar
[111]
Lyra D H, de Freitas Mendonça L, Galli G, Alves F C, Granato Í S C, Fritsche-Neto R. Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids. Molecular Breeding, 2017, 37(6): 80
CrossRef Google scholar
[112]
Gorjanc G, Jenko J, Hearne S J, Hickey J M. Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genomics, 2016, 17(1): 30
CrossRef Pubmed Google scholar
[113]
Nass L L, Paterniani E. Pre-breeding: a link between genetic resources and maize breeding. Scientia Agrícola, 2007, 57(3): 581–587
CrossRef Google scholar
[114]
Sachs M M. Cereal germplasm resources. Plant Physiology, 2009, 149(1): 148–151
CrossRef Pubmed Google scholar
[115]
Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, McMahan L, Van Buren P, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Y, Jeddeloh J A, Han Y, Lee H, Li P, Lisch D R, Liu S, Liu Z, Nagel D H, McCann M C, SanMiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen J L, Dawe R K, Jiang J, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112–1115
CrossRef Pubmed Google scholar
[116]
Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q, Yan J. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Molecular Plant, 2017, 10(3): 414–426
CrossRef Pubmed Google scholar
[117]
Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L, Gao S, Xu X, Zhang G, Li Y, Jiao Y, Doebley J F, Ross-Ibarra J, Lorant A, Buffalo V, Romay M C, Buckler E S, Ware D, Lai J, Sun Q, Xu Y. Construction of the third-generation Zea mays haplotype map. GigaScience, 2018, 7(4): 1–12
CrossRef Pubmed Google scholar
[118]
Yang W, Duan L, Chen G, Xiong L, Liu Q. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Current Opinion in Plant Biology, 2013, 16(2): 180–187
CrossRef Pubmed Google scholar
[119]
Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 2014, 5(1): 5087
CrossRef Pubmed Google scholar
[120]
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30(2): 174–178
CrossRef Pubmed Google scholar
[121]
Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 2012, 7(5): e36406
CrossRef Pubmed Google scholar
[122]
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant Journal, 2013, 74(1): 174–183
CrossRef Pubmed Google scholar
[123]
Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang Y M, Wang G, Li L. QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Molecular Plant, 2019, 12(3): 426–437
CrossRef Pubmed Google scholar
[124]
Yang J, Jiang H, Yeh C T, Yu J, Jeddeloh J A, Nettleton D, Schnable P S. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant Journal, 2015, 84(3): 587–596
CrossRef Pubmed Google scholar
[125]
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016, 14(10): 1941–1955
CrossRef Pubmed Google scholar
[126]
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E B, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43–49
CrossRef Pubmed Google scholar
[127]
Xu X, Liu X, Ge S, Jensen J D, Hu F, Li X, Dong Y, Gutenkunst R N, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30(1): 105–111
CrossRef Pubmed Google scholar
[128]
Yang X H, Gao S B, Xu S T, Zhang Z X, Prasanna B M, Li L, Li J S, Yan J B. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breeding, 2011, 28(4): 511–526
CrossRef Google scholar
[129]
Yang M, Wang X, Ren D, Huang H, Xu M, He G, Deng X W. Genomic architecture of biomass heterosis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30): 8101–8106
CrossRef Pubmed Google scholar
[130]
Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, Liu K, Zhu C, Huang T, Zhao Q, Zhang L, Fan D, Zhou C, Lu Y, Weng Q, Wang Z X, Li J, Han B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 6258
CrossRef Pubmed Google scholar
[131]
Asoro F G, Newell M A, Beavis W D, Scott M P, Jannink J L. Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome, 2011, 4(2): 132–144
CrossRef Google scholar
[132]
Wientjes Y C J, Veerkamp R F, Calus M P L. The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics, 2013, 193(2): 621–631
CrossRef Pubmed Google scholar
[133]
Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity, 2014, 112(1): 48–60
CrossRef Pubmed Google scholar
[134]
Bernardo R. Genomewide selection when major genes are known. Crop Science, 2014, 54(1): 68–75
CrossRef Google scholar
[135]
Jacobson A, Lian L, Zhong S, Bernardo R. General combining ability model for genome-wide selection in a biparental cross. Crop Science, 2014, 54(3): 895–905
CrossRef Google scholar
[136]
Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One, 2016, 11(6): e0156744
CrossRef Pubmed Google scholar
[137]
Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, Campos G L, Montesinos-López O A, Burgueño J. Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome, 2016, 9(3): 1–20
CrossRef Pubmed Google scholar
[138]
Crossa J, Campos G D L, Maccaferri M, Tuberosa R, Burgueño J, Pérez-rodríguez P. Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Science, 2016, 56(5): 2193–2209
CrossRef Google scholar
[139]
Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgueño J, de los Campos G. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical and Applied Genetics, 2014, 127(3): 595–607
CrossRef Pubmed Google scholar

Acknowledgements

We thank Thea Mi Weiß and Dr. Kesheng Wang for their substantial contribution to the revision of this review. This project was supported by the National Key Research and Development Program of China (2018YFD0100201 and 2016YFD0101201), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, and the Sino-German International Research Training Group “Adaptation of maize-based food-feed-energy systems to limited phosphate resources.”

Compliance with ethics guidelines

ƒDongdong Li, Meng Wang, Xianyan Kuang, and Wenxin Liu declare that they have no conflicts of interest or financial conflicts to disclose.ƒThis article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2019. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(556 KB)

Accesses

Citations

Detail

Sections
Recommended

/