Quantum transport in topological semimetals under magnetic fields

Hai-Zhou Lu, Shun-Qing Shen

PDF(1444 KB)
PDF(1444 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127201. DOI: 10.1007/s11467-016-0609-y
REVIEW ARTICLE
REVIEW ARTICLE

Quantum transport in topological semimetals under magnetic fields

Author information +
History +

Abstract

Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

Keywords

topological semimetal / magnetoconductivity / magnetoresistance / localization / anti-localization / chiral anomaly

Cite this article

Download citation ▾
Hai-Zhou Lu, Shun-Qing Shen. Quantum transport in topological semimetals under magnetic fields. Front. Phys., 2017, 12(3): 127201 https://doi.org/10.1007/s11467-016-0609-y

References

[1]
L. Balents, Weyl electrons kiss, Physics 4, 36 (2011)
CrossRef ADS Google scholar
[2]
G. E. Volovik, The Universe in a Helium Droplet, Oxford: Clarendon Press, 2003
[3]
X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)
CrossRef ADS Google scholar
[4]
K. Y. Yang, Y. M. Lu, and Y. Ran, Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B 84(7), 075129 (2011)
CrossRef ADS Google scholar
[5]
A. A. Burkov and L. Balents, Weyl Semimetal in a Topological Insulator Multilayer, Phys. Rev. Lett. 107(12), 127205 (2011)
CrossRef ADS Google scholar
[6]
G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett. 107(18), 186806 (2011)
CrossRef ADS Google scholar
[7]
P. Delplace, J. Li, and D. Carpentier, Topological Weyl semi-metal from a lattice model, EPL 97(6), 67004 (2012)
CrossRef ADS Google scholar
[8]
J. H. Jiang, Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes, Phys. Rev. A 85(3), 033640 (2012)
CrossRef ADS Google scholar
[9]
S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)
CrossRef ADS Google scholar
[10]
Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A= Na, K, Rb), Phys. Rev. B 85(19), 195320 (2012)
CrossRef ADS Google scholar
[11]
B. Singh, A. Sharma, H. Lin, M. Z. Hasan, R. Prasad, and A. Bansil, Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors, Phys. Rev. B 86(11), 115208 (2012)
CrossRef ADS Google scholar
[12]
Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)
CrossRef ADS Google scholar
[13]
J. Liu and D. Vanderbilt, Weyl semimetals from noncentrosymmetric topological insulators,Phys. Rev. B 90(15), 155316 (2014)
CrossRef ADS Google scholar
[14]
D. Bulmash, C. X. Liu, and X. L. Qi, Prediction of a Weyl semimetal in Hg1txtyCdxMnyTe, Phys. Rev. B 89(8), 081106 (2014)
CrossRef ADS Google scholar
[15]
M. Brahlek, N. Bansal, N. Koirala, S. Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Topologicalmetal to band-insulator transition in (Bi1−xInx)2Se3 thin films, Phys. Rev. Lett. 109(18), 186403 (2012)
CrossRef ADS Google scholar
[16]
Liang Wu, M. Brahlek, R. Valdés Aguilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3, Nat. Phys. 9, 410 (2013)
CrossRef ADS Google scholar
[17]
Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal, Na3Bi, Science 343(6173), 864 (2014)
CrossRef ADS Google scholar
[18]
S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T. R. Chang, H. T. Jeng, C. Y. Huang, W. F. Tsai, H. Lin, P. P. Shibayev, F. C. Chou, R. J. Cava, and M. Z. Hasan, Observation of Fermi arc surface states in a topological metal, Science 347(6219), 294 (2015)
CrossRef ADS Google scholar
[19]
Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable threedimensional topological Dirac semimetal Cd3As2, Nat. Mater. 13(7), 677 (2014)
CrossRef ADS Google scholar
[20]
M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5, 3786 (2014)
CrossRef ADS Google scholar
[21]
H. Yi, Z. Wang, C. Chen, Y. Shi, Y. Feng, A. Liang, Z. Xie, S. He, J. He, Y. Peng, X. Liu, Y. Liu, L. Zhao, G. Liu, X. Dong, J. Zhang, M. Nakatake, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Z. Xu, C. Chen, X. Dai, Z. Fang, and X. J. Zhou, Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2, Sci. Rep. 4, 6106 (2014)
CrossRef ADS Google scholar
[22]
S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)
CrossRef ADS Google scholar
[23]
H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)
CrossRef ADS Google scholar
[24]
S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015)
CrossRef ADS Google scholar
[25]
B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)
CrossRef ADS Google scholar
[26]
S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. L. Zhang, R. Sankar, G. Q. Chang, Z. J. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. C. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)
CrossRef ADS Google scholar
[27]
S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, T. Kim, M. N. Ali, B. Buechner, M. Hoesch, and R. J. Cava, Time-reversal symmetry breaking type-II Weyl state in YbMnBi2, arXiv: 1507.04847
[28]
H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice, Nucl. Phys. B 185(1), 20 (1981)
CrossRef ADS Google scholar
[29]
H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130(6), 389 (1983)
CrossRef ADS Google scholar
[30]
D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88(10), 104412 (2013)
CrossRef ADS Google scholar
[31]
A. A. Burkov, Chiral anomaly and diffusive magnetotransport in Weyl metals, Phys. Rev. Lett. 113(24), 247203 (2014)
CrossRef ADS Google scholar
[32]
D. E. Kharzeev and H. U. Yee, Anomaly induced chiral magnetic current in a Weyl semimetal: Chiral electronics, Phys. Rev. B 88(11), 115119 (2013)
CrossRef ADS Google scholar
[33]
S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals, Phys. Rev. X 4(3), 031035 (2014)
CrossRef ADS Google scholar
[34]
J. Zhou, H. R. Chang, and D. Xiao, Plasmon mode as a detection of the chiral anomaly in Weyl semimetals, Phys. Rev. B 91(3), 035114 (2015)
CrossRef ADS Google scholar
[35]
D. T. Son and N. Yamamoto, Berry curvature, triangle anomalies, and the chiral magnetic effect in Fermi liquids, Phys. Rev. Lett. 109(18), 181602 (2012)
CrossRef ADS Google scholar
[36]
M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys. Rev. Lett. 109(16), 162001 (2012)
CrossRef ADS Google scholar
[37]
K. Landsteiner, E. Megías, and F. Pena-Benitez, Gravitational anomaly and transport phenomena, Phys. Rev. Lett. 107(2), 021601 (2011)
CrossRef ADS Google scholar
[38]
M. C. Chang and M. F. Yang, Chiral magnetic effect in a two-band lattice model of Weyl semimetal, Phys. Rev. B 91(11), 115203 (2015)
CrossRef ADS Google scholar
[39]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, Topological Imbert–Fedorov shift in Weyl semimetals, Phys. Rev. Lett. 115(15), 156602 (2015)
CrossRef ADS Google scholar
[40]
Q. D. Jiang, H. Jiang, H. Liu, Q. F. Sun, and X. C. Xie, Chiral wave-packet scattering in Weyl semimetals, Phys. Rev. B 93(19), 195165 (2016)
CrossRef ADS Google scholar
[41]
C. Z. Chen, J. Song, H. Jiang, Q. F. Sun, Z. Wang, and X. C. Xie, Disorder and metal-insulator transitions in Weyl semimetals, Phys. Rev. Lett. 115(24), 246603 (2015)
CrossRef ADS Google scholar
[42]
C. Z. Chen, H. Liu, H. Jiang, and X. C. Xie, Positive magnetoconductivity of Weyl semimetals in the ultraquantum limit, Phys. Rev. B 93(16), 165420 (2016)
CrossRef ADS Google scholar
[43]
H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett. 111(24), 246603 (2013)
CrossRef ADS Google scholar
[44]
K. S. Kim, H. J. Kim, and M. Sasaki, Boltzmann equation approach to anomalous transport in a Weyl metal, Phys. Rev. B 89(19), 195137 (2014)
CrossRef ADS Google scholar
[45]
Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)
CrossRef ADS Google scholar
[46]
R. Y. Chen, Z. G. Chen, X. Y. Song, J. A. Schneeloch, G. D. Gu, F. Wang, and N. L. Wang, Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac fermions in ZrTe5, Phys. Rev. Lett. 115(17), 176404 (2015)
CrossRef ADS Google scholar
[47]
G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang, and M. Tian, Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe5, Phys. Rev. B 93(11), 115414 (2016)
CrossRef ADS Google scholar
[48]
J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
CrossRef ADS Google scholar
[49]
S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2, Nat. Mater. 13(9), 851 (2014)
CrossRef ADS Google scholar
[50]
T. Liang, Q. Gibson, M. N. Ali, M. H. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)
CrossRef ADS Google scholar
[51]
J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points, Phys. Rev. B 92(8), 081306 (2015)
CrossRef ADS Google scholar
[52]
L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2, Phys. Rev. Lett. 113(24), 246402 (2014)
CrossRef ADS Google scholar
[53]
Y. F. Zhao, H. W. Liu, C. L. Zhang, H. C. Wang, J. F. Wang, Z. Q. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. L. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X 5(3), 031037 (2015)
CrossRef ADS Google scholar
[54]
J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, Z. Jin, Z. G. Chen, Z. Wang, Q. Wang, J. Zhao, S. Li, X. Dai, J. Zou, Z. Xia, L. Li, and F. Xiu, Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun. 6, 7779 (2015)
CrossRef ADS Google scholar
[55]
C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, W. Schnelle, J. Grin, C. Felser, and B. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nature Phys. 11, 645 (2015)
CrossRef ADS Google scholar
[56]
A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear Magnetoresistance Caused by Mobility Fluctuations in n-Doped Cd3As2, Phys. Rev. Lett. 114, 117201 (2015)
CrossRef ADS Google scholar
[57]
C. Z. Li, L. X. Wang, H. W. Liu, J. Wang, Z. M. Liao, and D. P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires, Nat. Commun. 6, 10137 (2015)
CrossRef ADS Google scholar
[58]
H. Li, H. T. He, H. Z. Lu, H. C. Zhang, H. C. Liu, R. Ma, Z. Y. Fan, S. Q. Shen, and J. N. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun. 7, 10301 (2016)
CrossRef ADS Google scholar
[59]
C. Zhang, E. Zhang, Y. Liu, Z.G. Chen, S. Liang, J. Cao, X. Yuan, L. Tang, Q. Li, T. Gu, Y. Wu, J. Zou, and F. Xiu, Detection of chiral anomaly and valley transport in Dirac semimetals, arXiv: 1504.07698
[60]
H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X. J. Liu, X. C. Xie, J. Wei, and J. Wang, Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals, Nat. Mater. 15(1), 38 (2016)
CrossRef ADS Google scholar
[61]
L. Aggarwal, A. Gaurav, G. S. Thakur, Z. Haque, A. K. Ganguli, and G. Sheet, Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2, Nat. Mater. 15(1), 32 (2016)
CrossRef ADS Google scholar
[62]
X. C. Huang, L. X. Zhao, Y. J. Long, P. P. Wang, D. Chen, Z. H. Yang, H. Liang, M. Q. Xue, H. M. Weng, Z. Fang, X. Dai, and G. F. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
CrossRef ADS Google scholar
[63]
C. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, H. T. Jeng, H. Lin, M. Neupane, D. S. Sanchez, H. Zheng, G. Bian, J. Wang, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Z. Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016)
CrossRef ADS Google scholar
[64]
C. Zhang, C. Guo, H. Lu, X. Zhang, Z. Yuan, Z. Lin, J. Wang, and S. Jia, Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium, Phys. Rev. B 92(4), 041203 (2015)
CrossRef ADS Google scholar
[65]
F. Arnold, C. Shekhar, S. C. Wu, Y. Sun, R. D. dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun. 7, 11615 (2016)
CrossRef ADS Google scholar
[66]
C. Zhang, Z. Lin, C. Guo, S.Y. Xu, C.C. Lee, H. Lu, S.M. Huang, G. Chang, C.H. Hsu, H. Lin, L. Li, C. Zhang, T. Neupert, M. Z. Hasan, J. Wang, and S. Jia, Quantum phase transitions in Weyl semimetal tantalum monophosphide, arXiv: 1507.06301
[67]
X. J. Yang, Y. P. Liu, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190
[68]
X. Yang, Y. Li, Z. Wang, Y. Zhen, and Z.A. Xu, Observation of negative magnetoresistance and nontrivial π Berrys phase in 3D Weyl semi-metal NbAs, arXiv: 1506.02283
[69]
Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng, and Z.-A. Xu, Helicity-protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B 93, 121112(R) (2016)
[70]
H. Wang, C. K. Li, H. Liu, J. Yan, J. Wang, J. Liu, Z. Lin, Y. Li, Y. Wang, L. Li, D. Mandrus, X. C. Xie, J. Feng, and J. Wang, Chiral anomaly and ultrahigh mobility in crystalline HfTe5, Phys. Rev. B 93(16), 165127 (2016)
CrossRef ADS Google scholar
[71]
H. Z. Lu and S. Q. Shen, Weak antilocalization and localization in disordered and interacting Weyl semimetals, Phys. Rev. B 92(3), 035203 (2015)
CrossRef ADS Google scholar
[72]
H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with shortrange potential, Phys. Rev. B 92(4), 045203 (2015)
CrossRef ADS Google scholar
[73]
X. Dai, H.-Z. Lu, S.-Q. Shen, and H. Yao, Detecting monopole charge in Weyl semimetals via quantum interference transport, Phys. Rev. B 93, 161110(R) (2016)
[74]
S. B. Zhang, H. Z. Lu, and S. Q. Shen, Linear magnetoconductivity in an intrinsic topological Weyl semimetal, New J. Phys. 18(5), 053039 (2016)
CrossRef ADS Google scholar
[75]
C. M. Wang, H. Z. Lu, and S. Q. Shen, Anomalous phase shift of quantum oscillations in 3D topological semimetals, Phys. Rev. Lett. 117, 077201 (2016)
CrossRef ADS Google scholar
[76]
H.Z. Lu, and S.Q. Shen, Weak localization and weak anti-localization in topological insulators, Proc. SPIE 9167, Spintronics VII, 91672E (2014)
[77]
H.-Z. Lu and S.-Q. Shen, Weak antilocalization and interaction-induced localization of Dirac and Weyl fermions in topological insulators and semimetals, Chin. Phys. B 25(11), 117202 (2016)
[78]
P. Hosur and X. Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys. 14(9-10), 857 (2013)
CrossRef ADS Google scholar
[79]
S. Q. Shen, Topological Insulators, Berlin Heidelberg: Springer-Verlag, 2012
CrossRef ADS Google scholar
[80]
D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
CrossRef ADS Google scholar
[81]
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, and S. Q. Shen, Massive Dirac fermions and spin physics in an ultrathin film of topological insulator, Phys. Rev. B 81(11), 115407 (2010)
CrossRef ADS Google scholar
[82]
Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett. 71(22), 3697 (1993)
CrossRef ADS Google scholar
[83]
W. Y. Shan, H. Z. Lu, and S. Q. Shen, Effective continuous model for surface states and thin films of threedimensional topological insulators, New J. Phys. 12(4), 043048 (2010)
CrossRef ADS Google scholar
[84]
S. Q. Shen, W. Y. Shan, and H. Z. Lu, Topological insulator and the Dirac equation, SPIN 01(01), 33 (2011)
CrossRef ADS Google scholar
[85]
S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Resonant spin hall conductance in two-dimensional electron systems with a Rashba interaction in a perpendicular magnetic field, Phys. Rev. Lett. 92(25), 256603 (2004)
CrossRef ADS Google scholar
[86]
S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, Resonant spin Hall conductance in quantum Hall systems lacking bulk and structural inversion symmetry, Phys. Rev. B 71(15), 155316 (2005)
CrossRef ADS Google scholar
[87]
J. J. Sakurai, Modern Quantum Mechanics (Revised Edition), Addison Wesley, 1993
[88]
L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S. K. Mo, C. Felser, B. Yan, and Y. L. Chen, Weyl semimetal phase in the noncentrosymmetric compound TaAs, Nat. Phys. 11(9), 728 (2015)
CrossRef ADS Google scholar
[89]
S. Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T. R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C. C. Lee, S. M. Huang, B. Wang, A. Bansil, H. T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Zahid Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys. 11(9), 748 (2015)
CrossRef ADS Google scholar
[90]
N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autes, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding, and M. Shi, Observation of Weyl nodes and Fermi arcs in tantalum phosphide, Nat. Commun. 7, 11006 (2016)
CrossRef ADS Google scholar
[91]
C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry, Phys. Rev. Lett. 108(26), 266802 (2012)
CrossRef ADS Google scholar
[92]
T. Guan, C. J. Lin, C. L. Yang, Y. G. Shi, C. Ren, Y. Q. Li, H. M. Weng, X. Dai, Z. Fang, S. S. Yan, and P. Xiong, Evidence for half-metallicity in n-type HgCr2Se4, Phys. Rev. Lett. 115(8), 087002 (2015)
CrossRef ADS Google scholar
[93]
S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Chang, T. R. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, D. Sanchez, H. Zheng, H. T. Jeng, A. Bansil, T. Neupert, H. Lin, and M. Z. Hasan, New type of Weyl semimetal with quadratic double Weyl fermions, Proc. Natl. Acad. Sci. USA 113(5), 1180 (2016)
CrossRef ADS Google scholar
[94]
P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57(2), 287 (1985)
CrossRef ADS Google scholar
[95]
F. J. Dyson, Statistical theory of the energy levels of complex systems (I), J. Math. Phys. 3(1), 140 (1962)
CrossRef ADS Google scholar
[96]
S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)
CrossRef ADS Google scholar
[97]
E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene, Phys. Rev. Lett. 97(14), 146805 (2006)
CrossRef ADS Google scholar
[98]
B. L. Altshuler, A. G. Aronov, and P. A. Lee, Interaction effects in disordered Fermi systems in two dimensions, Phys. Rev. Lett. 44(19), 1288 (1980)
CrossRef ADS Google scholar
[99]
H. Fukuyama, Effects of interactions on non-metallic behaviors in two-dimensional disordered systems, J. Phys. Soc. Jpn. 48(6), 2169 (1980)
CrossRef ADS Google scholar
[100]
H. Z. Lu, J. Shi, and S. Q. Shen, Competition between weak localization and antilocalization in topological surface states, Phys. Rev. Lett. 107(7), 076801 (2011)
CrossRef ADS Google scholar
[101]
W. Y. Shan, H. Z. Lu, and S. Q. Shen, Spin-orbit scattering in quantum diffusion of massive Dirac fermions, Phys. Rev. B 86(12), 125303 (2012)
CrossRef ADS Google scholar
[102]
H. Z. Lu and S. Q. Shen, Finite-temperature conductivity and magnetoconductivity of topological insulators, Phys. Rev. Lett. 112(14), 146601 (2014)
CrossRef ADS Google scholar
[103]
S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)
[104]
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392(1802), 45 (1984)
[105]
N. H. Shon and T. Ando, Quantum transport in twodimensional graphite system, J. Phys. Soc. Jpn. 67(7), 2421 (1998)
CrossRef ADS Google scholar
[106]
H. Suzuura and T. Ando, Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice, Phys. Rev. Lett. 89(26), 266603 (2002)
CrossRef ADS Google scholar
[107]
A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55(2), 1142 (1997)
CrossRef ADS Google scholar
[108]
S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177(5), 2426 (1969)
CrossRef ADS Google scholar
[109]
J. S. Bell and R. Jackiw, A PCAC puzzle: π0→γγ in the σ-model, Nuovo Cim. A 60(1), 47 (1969)
CrossRef ADS Google scholar
[110]
J. Wang, H. Li, C. Chang, K. He, J. Lee, H. Lu, Y. Sun, X. Ma, N. Samarth, S. Shen, Q. Xue, M. Xie, and M. H. Chan, Anomalous anisotropic magnetoresistance in topological insulator films, Nano Res. 5(10), 739 (2012)
CrossRef ADS Google scholar
[111]
M. C. Chang and Q. Niu, Berry phase, hyperorbits, and the Hofstadter spectrum, Phys. Rev. Lett. 75(7), 1348 (1995)
CrossRef ADS Google scholar
[112]
G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Phys. Rev. B 59(23), 14915 (1999)
CrossRef ADS Google scholar
[113]
J. H. Zhou, H. Jiang, Q. Niu, and J. R. Shi, Topological invariants of metals and the related physical effects, Chin. Phys. Lett. 30(2), 027101 (2013)
CrossRef ADS Google scholar
[114]
P. Goswami and S. Tewari, Axionic field theory of (3+ 1)-dimensional Weyl semimetals, Phys. Rev. B 88(24), 245107 (2013)
CrossRef ADS Google scholar
[115]
A. A. Zyuzin and A. A. Burkov, Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B 86(11), 115133 (2012)
CrossRef ADS Google scholar
[116]
S.-K. Yip, Kinetic equation and magneto-conductance for Weyl metal in the clean limit, arXiv: 1508.01010
[117]
E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals, Phys. Rev. B 89(8), 085126 (2014)
CrossRef ADS Google scholar
[118]
V. Aji, Adler–Bell–Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates, Phys. Rev. B 85(24), 241101 (2012)
CrossRef ADS Google scholar
[119]
A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58(5), 2788 (1998)
CrossRef ADS Google scholar
[120]
Y. Ominato and M. Koshino, Quantum transport in a three-dimensional Weyl electron system, Phys. Rev. B 89(5), 054202 (2014)
CrossRef ADS Google scholar
[121]
P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal, Phys. Rev. B 92(7), 075205 (2015)
CrossRef ADS Google scholar
[122]
J. C. W. Song, G. Refael, and P. A. Lee, Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential, Phys. Rev. B 92(18), 180204 (2015)
CrossRef ADS Google scholar
[123]
G. D. Mahan, Many-Particle Physics, Plenum Press, 1990
CrossRef ADS Google scholar
[124]
M. E. Raikh and T. V. Shahbazyan, High Landau levels in a smooth random potential for two-dimensional electrons, Phys. Rev. B 47(3), 1522 (1993)
CrossRef ADS Google scholar
[125]
S. S. Murzin, Electron transport in the extreme quantum limit in applied magnetic field, Physics-Uspekhi 43(4), 349 (2000)
CrossRef ADS Google scholar
[126]
D. A. Pesin, E. G. Mishchenko, and A. Levchenko, Density of states and magnetotransport in Weyl semimetals with long-range disorder, Phys. Rev. B 92(17), 174202 (2015)
CrossRef ADS Google scholar
[127]
M. M. Parish and P. B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors, Nature 426(6963), 162 (2003)
CrossRef ADS Google scholar
[128]
P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, B. N. Narozhny, M. Schütt, and M. Titov, Magnetoresistance in two-component systems, Phys. Rev. Lett. 114(15), 156601 (2015)
CrossRef ADS Google scholar
[129]
N. Ramakrishnan, M. Milletari, and S. Adam, Transport and magnetotransport in three-dimensional Weyl semimetals, Phys. Rev. B 92(24), 245120 (2015)
CrossRef ADS Google scholar
[130]
Y. Pan, H. Wang, P. Lu, J. Sun, B. Wang, and D. Y. Xing, The large unsaturated magnetoresistance of Weyl semimetals, arXiv: 1509.03975

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(1444 KB)

Accesses

Citations

Detail

Sections
Recommended

/