A survey of dark matter and related topics in cosmology

Bing-Lin Young

PDF(17860 KB)
PDF(17860 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (2) : 121201. DOI: 10.1007/s11467-016-0583-4
REVIEW ARTICLE
REVIEW ARTICLE

A survey of dark matter and related topics in cosmology

Author information +
History +

Abstract

This article presents an extensive review of the status of the search of the dark matter. The first eight sections are devoted to topics in dark matter and its experimental searches, and the rest to selected topics in astrophysics and cosmology, which are intended to supply some of the needed background for students in particle physics. Sections 9 and 13 are introductory cosmology. The three astrophysical topics, Big Bang nucleosynthesis Section 10, Boltzmann transport equation and freeze out of massive particles Section 11, and CMB anisotropy Section 12 can all be studied in analytical approaches when reasonable approximations are made. Their original analytically forms, to which this article follows very closely, were given by particle physicists. Dark matter is an evolving subject requiring timely update to stay current. Hence a review of such a subject matter would undoubtedly have something wanting when it appears in print. It is hoped that this review can form a humble basis for those graduate students who would like to pursue the subject of dark matter. The reader can use the extensive table of contents to see in some details the materials covered in the article.

Keywords

dark matter / CMB anisotropy / Boltzmann transport equation / freeze out of massive particles

Cite this article

Download citation ▾
Bing-Lin Young. A survey of dark matter and related topics in cosmology. Front. Phys., 2017, 12(2): 121201 https://doi.org/10.1007/s11467-016-0583-4

References

[1]
S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61, 1 (1989)
CrossRef ADS Google scholar
[2]
D. J. Gross, The frontier physicist, Nature 467(7317), S8 (2010)
CrossRef ADS Google scholar
[3]
E. W. Kolb, Particle Physics and Cosmology, in: K. L. Peach and L. L. J. Vick (Eds.), St. Andrews, 1993, Proceedings, High Energy Phenomenology, arXiv: astroph/9403007
[4]
G. Aad, . (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214 [hep-ex]
CrossRef ADS Google scholar
[5]
S. Chatrchyan, . (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235 [hep-ex]
CrossRef ADS Google scholar
[6]
S. Chatrchyan, . (CMS Collaboration), Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110(8), 081803 (2013)
CrossRef ADS Google scholar
[7]
G. Aad, . (Atlas Collaboration), Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726, 120 (3013), arXiv: 1307.1432 [hepex]
[8]
Y. Baryshev, Paradoxes of cosmological physics in the beginning of the 21st century, in: Proceedings of the XXX-th International Workshop on High Energy Physics- Particle and Astroparticle Physics, Gravitation and Cosmology- Predictions, Observations and New Projects, June 23-27, 2014, in Protvino, Moscow region, Russia; arXiv: 1501.01919 [physics.gen-ph]
[9]
D. N. Apergel, , Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, Astrophys. J. Suppl. 170, 377 (2007), arXiv: astro-ph/0603449
[10]
This is the WMAP third data release made in March 2006. See The WMAP homepage including the WMAP 9-year results can be found at.
[11]
J. Beringer, (Particle Data Group), The review of particle physics, Phys. Rev. D 86, 010001 (2012)
CrossRef ADS Google scholar
[12]
A list of publications on various aspects of the Planck data can be found in
[13]
K. A. Olive, (Particle Data Group), The review of particle physics, Chin. Phys. C 38, 090001 (2014)
[14]
http://chandra.harvard.edu/press/10_releases/press_051110.html
[15]
L. Zappacosta, , Studying the WHIM content of the galaxy large-scale structures along the line of sight to H 2356-309, arXiv: 1004.5359 [astro-p-CO]
[16]
http://map.gsfc.nasa.gov/news/index.html
[17]
E. Komatsu, , Five-year Wilkinson Microwave Anisotropy ProbeObservations: Cosmological interpretation, Astrophys. J. Suppl. 180(2), 330 (2009), arXiv: 0803.0547
[18]
K. A. Olive, TASI lecture on dark matter, arXiv: astroph/0301505
[19]
H. Murayama, Physics beyond the standard model and dark matter, Lecture given in Les Houches 2006, arXiv: 0704.2276 [hep-ph]
[20]
F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helvetica Physica Acta 6, 110U127 (1933); See also: F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. 86, 217 (1937)
CrossRef ADS Google scholar
[21]
J. Einasto, Dark Matter, Astronomy and Astrophysics 2010, Eds. O. Engvold, R. Stabell, B. Czerny, and J. Lattanzio, in: Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK; arXiv: 0901.0632 [astro-ph.CO]
[22]
K. Freeman and G. McNamara, In Search of Dark Matter, Springer, 2006
[23]
H. Zinkernagel, High-energy physics and reality-some philosophical aspects of a science, Ph.D. thesis, 1998, Niels Boho Institute, pp 4–5
[24]
G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Eidence, candidates and constraints, Phys. Rep. 405, 279 (2005), arXiv: hep-ph/0404175
CrossRef ADS Google scholar
[25]
G. B. Gelmini, TASI 2014 Lectures: The hunt for dark matter, arXiv: 1502.01320 [hep-ph]
[26]
Powerpoint presentations of talks given at the 42nd SLAC Summer Institute (2014) can be found at https://indico.cern.ch/event/297618/other-view?view=standard
[27]
J. Primack, A brief history of dark matter
[28]
V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce, Simulations of the formation, evolution and clustering of galaxies and quasars, Nature 435(7042), 629 (2005), arXiv: astroph/0504097
[29]
NASA images from Large Synoptic Survey Telescope (LSST)
[30]
M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rep. 340(4-5), 291 (2001)
CrossRef ADS Google scholar
[31]
R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, et al., Dark matter maps reveal cosmic scaffolding, Nature 445 (7125), 286 (2007)
CrossRef ADS Google scholar
[32]
O. Goske, B. Moore, J. Kneib, and G. Soucail, A wide-field spectroscopic survey of the cluster of galaxies Cl0024+ 1654-II. A high–speed collision? Astron. Astrophys. 386, 31 (2002)
[33]
More can be found in http://www.spacetelescope.org/news/html/heic0709.html.
[34]
F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen, and S. Sarkar, Colliding clusters and dark matter selfinteractions, Mon. Not. R. Astron. Soc. 437, 2865 (2014), arXiv: 1308.3419 [astro-ph.CO]
CrossRef ADS Google scholar
[35]
https://chandra.harvard.edu/photo/2006/1e0657/
[36]
D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. 648, L109 (2006), arXiv: astro-ph/0608407
CrossRef ADS Google scholar
[37]
https://www.astro.umd.edu/
[38]
G. W. Angus, B. Famaey, and H. S. Zhao, Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry, Mon. Not. R. Astron. Soc. 371, 138 (2006), arXiv: astro-ph/0606216
CrossRef ADS Google scholar
[39]
M. Bradač, S. W. Allen, T. Treu, H. Ebeling, R. Massey, R. G. Morris, A. von der Linden, and D. Applegate Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222, arXiv: 0806.2320 [astroph]; a NASA news release at: http://www.nasa.gov/mission_pages/chandra/news/08-111.html. A short video can be found at
[40]
D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tottley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347, 1462 (2015), arXiv: 1503.07675 [astro-ph.CO]
[41]
R. Massey, , The behaviour of dark matter associated with 4 bright cluster galaxies in the 10kpc core of Abell 3827, Mon. Not. R. Astron. Soc. 449, 3393 (2015), arXiv: 1504.03388 [astroph.CO]
[42]
J. Navarro, C. S. Frenk, and S. D. White, The structure of cold Dark Matter Halos, Astrophys. J. 462, 563 (1886), arXiv: astro-ph/9508025
CrossRef ADS Google scholar
[43]
J. Navarro, C. S. Frenk, and S. D. White, Universal density profile from hierarchical clustering, Astrophys. J. 490, 493 (1997), arXiv: astro-ph/9611107
CrossRef ADS Google scholar
[44]
J. Einasto, On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters, Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87 (1965)
[45]
D. Merritt, A. W. Graham, B. Moore, J. Diemand, and B. Terzic, Empirical models for Dark Matter Halos. I. Nonparametric construction of density profiles and comparison with parametric models, Astrophys. J. 132, 2685 (2006), arXiv: astro-ph/0509417
CrossRef ADS Google scholar
[46]
A. A. Dutton and A. V. Macciò, Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles, Mon. Not. R. Astron. Soc. 441, 3359 (2014), arXiv: 1402.7073 [Astroph.CO]
CrossRef ADS Google scholar
[47]
A. Burkert, The structure of dark matter haloes in dwarf galaxies, Astrophys. J. 447, L25 (1995), arXiv: astroph/9504041
[48]
M. Pierre, J. M. Siegal-Gaskins, and P. Scott, Sensitivity of CTA to dark matter signals from the galactic center, JCAP 1406, 024 (2014), arXiv: 1401.7330 [astroph. HE]; Erratum: JCAP 1410, E01 (2014)
[49]
V. Vikram, . (DES Collaboration), Wide-Field lensing mass Maps from DES science verification data, arXiv: 1504.03002 [astro-ph.CO]
[50]
D. Scott and G. F. Smoot, Cosmic Microwave Background, given in Ref. [13]
[51]
D. H. Weinberg, J. S. Bullock, F. Gevernato, R. K. de Naray, and A. H. G. Peter, Cold dark matter: Controversies on small scales, Proceedings of the National Academy of Sciences of the USA (PNAS), approved Dec. 2, 2014; arXiv: 1306.0913 [astro-ph.CO]
[52]
M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. R. Astron. Soc. 415, L40 (2011), arXiv: 1103.0007 [astro-ph.CO]
CrossRef ADS Google scholar
[53]
E. Papastergis, R. Giovanelli, M. P. Haynes, and F. Shanka, Is there a “too big to fail” problem in the field? Astron. Astrophys. 574, A113 (2015), arXiv: 1407.4665 [astro-ph/GA]
CrossRef ADS Google scholar
[54]
J. R. Primack, Cosmological structure formation, arXiv: 1505.02821 [astro-ph.GA]
[55]
A. Schneider, D. Amderjadem, A. V. Maccio, and J. Diemand, Warm dark matter does not do better than cold dark matter in solving small-scale inconsistencies, Mon. Not. R. Astron. Soc. 441, 6 (2014), arXiv: 1309.5960 [astro-ph.CO]
CrossRef ADS Google scholar
[56]
D. N. Spergel and P. J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett. 84(17), 3760 (2000), arXiv: astro-ph/9909386
CrossRef ADS Google scholar
[57]
M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J. 270, 365 (1983)
CrossRef ADS Google scholar
[58]
J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70, 083509 (2004), arXiv: astro-ph/0403694
CrossRef ADS Google scholar
[59]
B. Famaey and S. McGaugh, Modified Newtonian Dynamics (MOND): Observational phenomenology and relativistic extension, arXiv: 1112.3960 [astro-ph.CO]
[60]
I. Ferreras, N. Mavromatos, M. Sakellariadou, and M. F. Yusaf, Confronting MOND and TeVeS with strong gravitational lensing over galactic scales: An extended survey, Phys. Rev. D 86, 083507 (2012), arXiv: 1205.4880 [astro-ph.CO]
CrossRef ADS Google scholar
[61]
J. W. Moffat, Scalar-tensor-vector gravity theory, JCAP 0603, 004 (2006), arXiv: gr-qc/0506021
[62]
C. Tao, Astrophysical constraints on dark Matter, to appear in the proceedings of CYGNUS 2011: 3rd Workshop on directional detection of dark matter (conference: C11-06-08), arXiv: 1110.0298 [astro-ph.CO]
[63]
http://zebu.uoregon.edu/
[64]
C. Munoz, Direct WIMP search and theoretical scenario, TAUP 2011
[65]
M. Drees and G. Gerbier, Dark Matter, review article given in Ref. [13]
[66]
F. Iocco, M. Pato, and G. Bertone, Evidence for dark matter in the inner Milky Way, Nat. Phys. 11, 245 (2015), arXiv: 1502.03821 [astoph.GA]
[67]
M. Pato and F. Iocco, The dark matter profile of the Milky Way: A non-parametric reconstruction, Astrophys. J. 803, L3 (2015), arXiv: 1504.03317 [astrpph. GA]
[68]
J. Silk, The Big Bang, Freeman, 1988
[69]
J. R. Bond, J. Centgrella, and A. S. Wilson, Dark matter and shocked pancakes, in: Proceedings of the Third Moriond Astrophysics Meeting, Formation and evolution of galaxies and large structures in the universe, edited by J. Audouze and J. Tran Thanh Van, Reidel, Dordrecht, 1984, pp 87–99
CrossRef ADS Google scholar
[70]
J. R. Primack and G. R. Blumenthal, What is the Dark Matter, in: Proceedings of the third Moriond Astrophysics Meeting, Formation and evolution of galaxies and large structures in the universe, edited by J. Audouze and J. Tran Thanh Van, Reidel, Dordrecht, 1984, pp 162–183
[71]
Daniel Chalonge Workshop CIAS Meudon 2010-2014
[72]
G. Gelmini and P. Gondolo, DM production mechanisms, Ch. 7 of Particle Dark Matter: Observations, Models and Searches, edited by G. Bertone, Cambridge University Press, 2010, arXiv: 1009.3690 [astro-ph.CO]
[73]
H. Baer, K.Y. Choi, E. Kim, and L. Roszkowski, Dark matter production in the early universe: Beyond the thermal WIMP paradigm, Phys. Rep. 555, 1 (2014), arXiv: 1407.0017 [hep-ph]
CrossRef ADS Google scholar
[74]
E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, 1989
[75]
G. L. Kane, P. Kumar, B. D. Nelson, and B. Zhang, Dark matter production mechanisms with a nonthermal cosmological history- A classification, arXiv: 1502.05406 [hep-ph]
[76]
L. D. Duffy and K. Van Bibber, Axions as dark matter particles, New J. Phys. 11, 105008 (2009), arXiv: 0904.3346 [hep-ph]
CrossRef ADS Google scholar
[77]
P. Sikivie, Dark matter axions, Int. J. Mod. Phys. A 25, 554 (2010), arXiv: 0909.0949 [hep-ph]
CrossRef ADS Google scholar
[78]
D. Hooper, Kaluza-Klein dark matter, in Proceeding of the Workshop on Exotic Physics with Neutrino Telescopes, 2006, available at: www.physics.uu.se/files/ hooper_epnt.pdf
[79]
K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark-matter particles, Phys. Rev. Lett. 64(6), 615 (1990)
CrossRef ADS Google scholar
[80]
D. J. H. Chung, E. W. Kolb, and A. Riotto, Nonthermal Supermassive Dark Matter, Phys. Rev. Lett. 81, 4048 (1998), arXiv: hep-ph/9805473; WIMPZILLAS! Proceedings of the 2nd International Conference on dark matter in astro and particle physics, arXiv: hepph/ 9810361
[81]
V. Kuzmin and T. I. Tkachev, Matter creation via vacuum fluctuations in the early universe and observed ultra-high energy cosmic ray events, Phys. Rev. D 59, 123006 (1999), arXiv: hep-ph/9809547
CrossRef ADS Google scholar
[82]
J. A. Frieman, G. B. Gelmini, M. Gleiser, and E. W. Kolb, Primordial origin of nontopological solitons, Phys. Rev. Lett. 60(21), 2101 (1988)
CrossRef ADS Google scholar
[83]
A. L. Macpherson and B. A. Campbell, Biased discrete symmetry breaking and Fermi balls, Phys. Lett. B 347, 205 (1995), arXiv: hep-ph/9408387
CrossRef ADS Google scholar
[84]
R. B. Metcalf and J. Silk, New constraints on macroscopic compact objects as dark matter candidates from gravitational lensing of type Ia supernovae, Phys. Rev. Lett. 98(7), 071302 (2007)
CrossRef ADS Google scholar
[85]
Goddard Space Flight Center, Dark Matter may be Black Hole Pinpoints. NASA’s Imagine the Universe.
[86]
M. Kesden and S. Hanasoge, Transient solar oscillation driven by primordial black holes, Phys. Rev. Lett. 107, 111101 (2011), arXiv: 1106.0011 [astro-ph.CO]
CrossRef ADS Google scholar
[87]
J. L. Feng and J. Kumar, Dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101(23), 231301 (2008)
CrossRef ADS Google scholar
[88]
K. K. Boddy, J. L. Feng, M. Kaplinghat, Y. Shadmi, and T. M. P. Tait, Strongly interaction dark: Selfinteractions and keV lines, Phys. Rev. D 90, 095016 (2014), arXiv: 1408.6532 [hep-ph]
CrossRef ADS Google scholar
[89]
R. Essig, et al., Working Group Report: Dark sectors and new, light, weakly-coupled particles, arXiv: 1311.0029 [hep-ph]
[90]
G. Steigman and M. S. Turner, Cosmological constraints on the properties of weakly interacting massive particles, Nucl. Phys. B 253, 375 (1985)
CrossRef ADS Google scholar
[91]
N. Daci, I. De Bruyn, S. Lowette, M. H. G. Tytgat, and B. Zaldivar, Simplified SIMOs and the LHC, arXiv: 1503.05505 [hep-ph]
[92]
Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker, The SIMP miracle, Phys. Rev. Lett. 113, 171301 (2014)
CrossRef ADS Google scholar
[93]
N. Bernal, C. Garcia-Cely, and R. Rosenfeld, WIMP and SIMP dark matter from the spontaneous breaking of a globle group, arXiv: 1501.0197 [hep-ph]
[94]
J. L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48, 495 (2010), arXiv: 1003.0904 [astro-ph.CO]
[95]
L. Roszkowski, Particle dark matter — A theorist’s perspective, Pramana 62, 389 (2004)
CrossRef ADS Google scholar
[96]
Report on the Direct Detection and Study of Dark Matter, The Dark Matter Scientific Assessment Group, A Joint Sub-panel of HEPAP and AAAC, p. 59, https://www.nsf.gov/mps/ast/aaac/dark_matter_scientific_assessment_group/dmsag//_final_report.pdf
[97]
S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407 (1979)
CrossRef ADS Google scholar
[98]
J. Madsen, Phase-space constraints on bosonic and fermionic dark matter, Phys. Rev. Lett. 64(23), 2744 (1990) J. Madsen, Generalized Tremaine-Gunn limits for bosons and fermions, Phys. Rev. D 44(4), 999 (1991)
CrossRef ADS Google scholar
[99]
F. Wilczek, Asymptotic Freedom: From Paradox to Paradigm, Nobel Lecture, December 8, 2004
[100]
J. Ellis and K. A. Olive, in: Particle Dark Matter, Observations, Models and Searches, Cambridge University Press, 2010, Ch. 8, Supersymmetric dark matter candidates, arXiv: 1001.3651 [astro-ph.CO]
[101]
S. Dodelson, Modern Cosmology, Academic Press, 2003
[102]
F. Bezrukov, Light sterile neutrino dark matter in extensions of the standard model, talk given at the Workshop CIAS Neudon 2011, Warm Dark matter in the galaxies: Theoretical and observational progress, June 8-10, 2011
[103]
M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, T. Theuns, J. Wang, S. D. M. White, A. Boyarsky, and O. Ruchayskiy, The haloes of bright satellite galaxies in a warm dark matter universe, Mon. Not. R. Astron. Soc. 420, 2318 (2012), arXiv: 1104.2929 [astro-ph.CO]
CrossRef ADS Google scholar
[104]
N. Smith, Status update on deep underground facilities, talk given in TAUP 2011
[105]
H. Chen, Underground laboratory in China, Eur. Phys. J. Plus 127, 105 (2012)
CrossRef ADS Google scholar
[106]
Focus point on Deep Underground Science Laboratories and Projects, edited by A. Bettini, Eur. Phys. J. Plus 127, Sep. 2012
[107]
J. D. Lewin and P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6, 87 (1996)
CrossRef ADS Google scholar
[108]
E. Armengaud, Gif Lectures on direct detection of dark matter, arXiv: 1003.2380 [hep-ph]
[109]
G. Jungman, M. Kamionkowski, and K. Girest, Supersymmetric dark matter, Phys. Rep. 267, 195 (1996), arXiv: hep-ph/9506380
CrossRef ADS Google scholar
[110]
K. Freese, J. Frieman, and A. Gould, Signal modulation in cold-dark-matter detection, Phys. Rev. D 37(12), 3388 (1988)
CrossRef ADS Google scholar
[111]
D. R. Tovey, R. J. Gaitskell, P. Gondolo, Y. A. Ramachers, and L. Roszkowski. A new model-independent method for extracting spin-dependent cross section limits from dark matter searches, Phys. Lett. B 488, 17 (2000), arXiv: hep-ph/0005041
CrossRef ADS Google scholar
[112]
Dark Matter Portal, http://lpsc.in2p3.fr/mayet/dm.php
[113]
Dark Matter Hub, http://www.interactions.org/cms/?pid=1034004
[114]
S. C. Kim, . (KIMS Collaboration), New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) Crystal Detectors, Phys. Rev. Lett. 108, 181301 (2012), arXiv: 1204.2646 [astro-ph.CO]
CrossRef ADS Google scholar
[115]
9th International Conference: Identification of Dark Matter, July 23-27, 2012, Chicago.
[116]
T. Saab, An introduction to dark matter direct detection searches & techniques, arXiv: 1203.2566 [physics.ins-det]
[117]
M. Boezio, . (PAMELA Collaboration), PAMELA and indirect dark matter searches, New J. Phys. 11, 102053 (2009)
CrossRef ADS Google scholar
[118]
D. Hooper, D. P. Finkbeiner, and G. Dobler, Evidence of dark matter annihilations in the WMAP haze, Phys. Rev. D 76, 083012 (2007), arXiv: 0705.3655 [Astro-ph]
CrossRef ADS Google scholar
[119]
M. Cirelli, Indirect search for dark matter: A status review, Pramana 79, 1021 (2012), arXiv: 1202.1454 [hepph]
CrossRef ADS Google scholar
[120]
P. Converners, P. Nath, and B. Nelson, The hunt for New physics at the Large Hadron Collider, Ch. 5, Connecting Dark Matter to the LHC, arXiv: 1001.2693 [hep-ph]
[121]
https://home.web.cern.ch/
[122]
A. Ringwald, L. J. Rosenberg, and G. Rybka, Axions and other similar particles, a mini review given in Ref. [13]
[123]
G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741, 51 (2008), arXiv: hep-ph/0611350
[124]
A. Friedland, M. Giannotti, and M. Wise, Constraining the axion-photon coupling with massive stars, Phys. Rev. Lett. 110(6), 061101 (2013)
CrossRef ADS Google scholar
[125]
G. Raffelt, Viewpoint: Particle physics in the sky, Physics 6, 14 (2013)
CrossRef ADS Google scholar
[126]
I. N. T. Workshop, 12-50W Vistas in Axion Physics: A Roadmap for theoretical and Experimental Axion Physics through 2050, April 23-26, 2012, Seatle.
[127]
C. Athanassopoulos, L. B. Auerbach, D. A. Bauer, R. D. Bolton, B. Boyd, , Candidate Events in a Search for Muon Antineutrino to Electron Antineutrino Oscillations, Phys. Rev. Lett. 75(14), 2650 (1995), arXiv: nucl-ex/9504002
CrossRef ADS Google scholar
[128]
This website entitled LSND is a collection of information related to LSND: http://www.nu.to.infn.it/exp/all/lsnd/#1
[129]
A. A. Aguilar-Arevalo, . (MiniBooNE Collaboration), Improved Search for ν − ν > υ − e Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110, 161801 (2013)
CrossRef ADS Google scholar
[130]
K. B. M. Mahn, . (MiniBooNE Collaboration), Dual baseline search for muon neutrino disappearance at 0.5 eV2<Δm2<40 eV2, Phys. Rev. D 85, 032007 (2012), arXiv: 1106.5685 [hep-ex]
CrossRef ADS Google scholar
[131]
This website contains various information on the sterile neutrino: http://www.nu.to.infn.it/
[132]
K. N. Abazajian, , Light sterile neutrinos: A white paper, arXiv: 1204.5379 [hep-ph]
[133]
T. Asaka, S. Blanchet, and M. Shaposhnikov, The vMSM, dark matter and neutrino masses, Phys. Lett. B 631, 151 (2005), arXiv: hep-ph/0503065
CrossRef ADS Google scholar
[134]
T. Asaka and M. Shaposhnikov, The MSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620, 17 (2005), arXiv: hep-ph/0505013
CrossRef ADS Google scholar
[135]
A. Kusenko, Sterile neutrinos: The dark side of the light fermions, Phys. Rep. 481, 1 (2009), arXiv: 0906.2968 [hep-ph]
CrossRef ADS Google scholar
[136]
A. Boyarsky, D. Iakubovskyi, and O. Ruchayskiy, Next decade of sterile neutrino studies, Phys. Dark Univ. 1, 136 (2012), arXiv: 1306.4954 [astro-ph.CO]
[137]
The Sterile Neutrinos references and useful link website: http://www.nu.to.infn.it/Sterile_Neutrinos/
[138]
E. Bulbul, , Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophy. J. 789, 13 (2014), arXiv: 1402.2301 [astropph. CO]
CrossRef ADS Google scholar
[139]
A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse, An unidentified line in X-ray of the Andromeda and Sperseus galaxy cluster, Phys. Rev. Lett. 113, 251301 (2014), arXiv: 1402.4119 [astro-ph.CO]
CrossRef ADS Google scholar
[140]
K. N. Abazajian, Resonantly-produced 7 KeV sterile neutrino dark matte models and the properties of Milky Way satellites, Phys. Rev. Lett. 112, 161303 (2014), arXiv: 1403.0954 [astro-ph.CO]
CrossRef ADS Google scholar
[141]
R. Bernabei, (DAMA/LIBRA Collaboration), New results from DAMA/LIBRA, Eur. Phys. J. C 67, 39 (2010), arXiv: 1002.1028 [astro-ph.GA]
CrossRef ADS Google scholar
[142]
R. Angnese, (CDMS Collaboration), Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111, 251401 (2013), arXiv: 1304.4279 [hep-ex]
[143]
C. E. Aaseth, . (CoGeNT Collaboration), CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors, Phys. Rev. D 88, 012002 (2013), arXiv: 1208.5737 [astro-ph.CO]
CrossRef ADS Google scholar
[144]
G. Angloher, . (CRESST Collaboration), Results from 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]
CrossRef ADS Google scholar
[145]
P. Belli, Results from DAMA/LIBRA and perspectives of phase 2, talk given at Aspen 2013-Closing in on Dark Matter, January 28-February 3, 2013
[146]
P. Belli, Results and strategisties for dark matter investigations, talk at NDM 2015, Jyvaskyla, Finland, June 1-5, 2015
[147]
DAMA Collaboration homepage:https://dama.web.roma2.infn.it/
[148]
M. Drees and G. Gerbier, Dark matter, a mini review in Ref. [11]
[149]
K. Blum, DAMA vs. the annually modulated muon background, arXiv: 1110.0857 [astroph.HE]
[150]
J. Klinger and V. A. Kudryavtsev, Muon-induced neutrons do not explain the DAMA data, Phys. Rev. Lett. 114, 151301 (2015), arXiv: 1503.07225 [hep-ph]
[151]
C. Arina, E. Del Nobile, and P. Panci, Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess, Phys. Rev. Lett. 114(1), 011301 (2015)
CrossRef ADS Google scholar
[152]
J. Cherwinka, (DM-Ice Collaboration), First data from DM-Ice17, Phys. Rev. D 90, 092005 (2014), arXiv: 1401.4804 [astro-ph.IM]
CrossRef ADS Google scholar
[153]
R. Agnese, (The SuperCDMS Collaboration), Search for low-mass weakly interacting massive particles with SuperCDMS, Phys. Rev. Lett. 112(24), 241302 (2014)
CrossRef ADS Google scholar
[154]
P. Cushman, Lecture given at the 2014 SLAC Summer Institute [26], entitled WIMP Direct Detection Searches: Solid State Technologies
[155]
B. Angloher, (The EURECA Collaboration), EURECA conceptual design report, Physics of the Dark Universe 3, 41–74 (2014)
[156]
C. E. Aalseth, (CoGeNT Collaboration), Results from a Search for Light-Mass Dark Matter with a p-type Point Contact Germanium Detector, Phys. Rev. Lett. 106, 131301 (2011), arXiv: 1002.4703 [astro-ph.CO]
CrossRef ADS Google scholar
[157]
C. E. Aalseth, (CoGeNT Collaboration), Search for an Annual Modulation in a p-type Point Contact Germanium Dark Matter Detector, Phys. Rev. Lett. 107, 141301 (2011), arXiv: 1106.0650 [astro-ph.CO]
CrossRef ADS Google scholar
[158]
P. J. Fox, J. Kopp, M. Lisanti, and N. Weiner, A Co- GeNT modulation analysis, Phys. Rev. D 85, 036008 (2012), aXiv: 1107.0717 [hep-ph]
[159]
C. McCabe, DAMA and CoGeNT without astrophysical uncertainties, arXiv: 1107.0741 [hep-ph]
[160]
J. Herrero-Garcia, T. Schwetz, and J. Zupan, Astrphysics independent bounds on the annual modulation of dark matter signals, arXiv: 1205.0134 [hep-ph]
[161]
E. Aprile, (XENON100 Collaboration), First dark matter result from the XENON100 experiment, arXiv: 1005.0389 [astro-ph.CO]
[162]
C. C. Aalseth, , Search for an annual modulation in three years of CoGeNT dark matter detector data, arXiv: 1401.3295 [astro-ph.CO]
[163]
J. H. Davis, C. McCabe, and C. Boehm, Quantifying the evidence for dark matter in CoGeNT data, JCAP 1408, 014 (2014), arXiv: 1405.0495 [hep-ph]
[164]
G. Angloher, (CRESST Collaboration), Results frm 730 kg days of the CRESST-II Dark Matter Search, Eur. Phys. J. C 72, 1971 (2012), arXiv: 1109.0702 [astro-ph.CO]
CrossRef ADS Google scholar
[165]
G. Angloher, (CRESST Collaboration), Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 3184 (2014), arXiv: 1407.3146 [astro-ph.CO]
CrossRef ADS Google scholar
[166]
X.-J. Bi, P.-F. Yin, and Q. Yuan, Status of dark matter detection, Front. Phys. 8, 794 (2013), arXiv: 1409.4590 [hep-ph]
CrossRef ADS Google scholar
[167]
M. Boudaud, , A new look at the cosmic ray positron fraction, Astron. Astrophys. 575, A67 (2015)
CrossRef ADS Google scholar
[168]
S.-J. Lin, Q. Yuan, and X.-J. Bi, Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties, Phys. Rev. D 91, 063508 (2015), arXiv: 1409.6248 [astro-ph.HE]
CrossRef ADS Google scholar
[169]
J. Feng and H. H. Zhang, Pulsar interpretation of the lepton spectra measured by AMS-02, arXiv: 1504.03312 [hep-ph]
[170]
S. Ting, The AMS Experiment, talk given at the AMS Day at CERN, April 15-17, 2015
[171]
G. Giesen, M. Boudaud, Y. Génolini, V. Poulin, M. Cirelli, P. Salati, and P. D. Serpico, AMS-02 Antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, arXiv: 1504.04276 [astro-ph.HE]
[172]
K. Hamaguchi, T. Moroi, and K. Nakayama, AMS-02 Antiprotons from Annihilating or Decaying Dark Matter, Phys. Lett. B 747, 523 (2015), arXiv: 1504.05937 [hep-ph]
[173]
L. Bergström, Dark matter evidence, particle physics candidates and detection methods, arXiv: 1205.4882
[174]
C. Weniger, A tentative Gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope, arXiv: 1204.2797 [hep-ph]
[175]
M. Ackermann, (Fermi-LAT Collaboration), Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107, 241302 (2011), arXiv: 1108.3546 [astro-ph.HE]
CrossRef ADS Google scholar
[176]
A. Geringer-Smith and S. M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107, 241303 (2011), arXiv: 1108.2914 [astro-ph.CO]
CrossRef ADS Google scholar
[177]
Y-L. S. Tsai, Q. Yuan, and X. Huang, A generic method to constrain the dark matter model parameter from Fermi observations of dwarf spheroids, JCAP 1303, 018 (2013), arXiv: 1212.3990 [astro-ph.HE]
[178]
S. Ando and D. Nagai, Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster, JCAP 1207, 017 (2012), arXiv: 1201.0753 [astro-ph.HE]
[179]
Jianxin Han, C. S. Frenk, V. R. Eke, and Liang Cao, Constraining Extended Gamma-ray Emission from Galaxy Clusters, Mon. Not. R. Astron. Soc. 427, 1651 (2012), arXiv: 1207.6749 [astro-ph.CO]
CrossRef ADS Google scholar
[180]
S. Ando and E. Komatsu, Constraints on the annihilation cross section of dark matter particles from anisotropies in the diffuse gamma-ray background measured with Fermi-LAT, arXiv: 1301.5901 [astro-ph.CO]
[181]
M. Ackermann, (Fermi-LAT Collaboration), The spectrum of isotropic diffuse gamma ray emission between 100 MeV and 820 GeV, Astrophys. J. 799, 86 (2015), arXiv: 1410.3696 [astro-ph.DE]
CrossRef ADS Google scholar
[182]
M. Fornasa and M. A. Sanchez-Conde, The nature of the diffuse gamma-ray background, arXiv: 1502.02866 [astro-ph.CO]
[183]
D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84, 123005 (2011), arXiv: 1110.0006 [astro-ph.HE]
CrossRef ADS Google scholar
[184]
A. Boyarsky, D. Malyshev, and D. Ruchayskiy, A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B 705, 165 (2011), arXiv: 1012.5839 [hep-ph]
CrossRef ADS Google scholar
[185]
K. N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86, 083511 (2012), Erratum: Phys. Rev. D 87, 129902 (2013), arXiv: 1207.6047 [astro-ph.HE]
[186]
T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R. Slatyer, The characterization of the gamma-ray signal from the central Milky Way: A compelling case for annihilating dark matter, arXiv: 1402.6703 [astro-ph.HE]
[187]
T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 1207, 054 (2012), arXiv: 1203.1312 [hep-ph]
[188]
E. Tempel, A. Hektor, and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in subhaloes and in the galactic center, JCAP 1209, 032 (2012), arXiv: 1205.1045 [hep-ph]
[189]
M. Ackermann, , Updated search for spectral lines from galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91, 122002 (2015)
CrossRef ADS Google scholar
[190]
N. Prantzos, , The 511 KeV emission from positron annihilation in the Galaxy, Rev. Mod. Phys. 83, 1001 (2011), arXiv: 1009.4620 [astro-ph.HE]
CrossRef ADS Google scholar
[191]
K. Helbing, (The IceCube Collaboration), IceCube as a discovery observatory for physics beyond the standard model, arXiv: 1107.5227 [hep-ex]
[192]
R. Kappl and M. W. Winkler, New limits on dark matter from Super-Kamiokande, Nucl. Phys. B 850, 505 (2011) arXiv: 1104.0679 [hep-ph]
CrossRef ADS Google scholar
[193]
M. G. Aartsen, , Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110, 131302 (2013), arXiv: 1212.4097 [astro-ph.HE]
CrossRef ADS Google scholar
[194]
K. Choi, (Super-K Collaboration), Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande, arXiv: 1503.04858 [hep-ex]
[195]
M. G. Aartsen, (IceCube Collaboration), Search for dark matter annihilation in the galactic center with IceCube-79, arXiv: 1505.07259 [astro-ph.HE]
[196]
F. Donato, N. Fernengo, and P. Salati, Antideuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62, 043003 (2000), arXiv: hep-ph/9904481
CrossRef ADS Google scholar
[197]
M. Kadastic, M. Raidal, and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett. B 683, 248 (2010), arXiv: 0908.1578 [hep-ph]
CrossRef ADS Google scholar
[198]
T. Aramaki, , Review of the theoretical and experimental status of dark matter identification with cosmicray antideuterons, arXiv: 1505.07785 [hep-ph]
[199]
J. B. Billard and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89, 023524 (2024), arXiv: 1307.5458 [hep-ph]
[200]
M. Schumann, Dark Matter 2014, EPJ Web Conf. 96, 01027 (2015), arXiv: 1501.01200 [astroph.CO]
[201]
E. Aprile, (XENON Collaboration), Physics reach of the XENON1T dark matter experiment, JCAP 04, 027 (2016), arXiv: 1512.07501 [physics.ins-det]
[202]
L. Baudis, , Neutrino physics with multi-ton scale liquid xenon detector, JCAP 1401, 044 (2014), arXiv: 1309.7024 [physics.ins-det]
[203]
A. Kish, Direct Dark Matter Detection with Xenon and DARWIN Experiment, PoS TIPP 2014, 164 (2014), C14-06-02 Proceedings
[204]
D. S. Akerib, (LZ Collaboration), LUX-ZEPLIN (LZ) Conceptual Design Report, LBNL-190005, arXiv: 1509.02910 [physics.ins-det]
[205]
D. Bauer, , Snowmass CF1 Summary: WIMP Dark Matter Direct Detection, arXiv: 1310.8327 [hep-ex]
[206]
L. Hsu, Direct searches for dark matter, plenary talk given at the ICHEP 2012
[207]
R. Aaij, , First evidence for the decay B s 0 → μ + μ − Phys. Rev. Lett. 110(2), 021801 (2013)
CrossRef ADS Google scholar
[208]
K. Hara, (Belle Collaboration), Evidence for B − → τ − ν ¯ τ with a Hadronic Tagging Method Using the Full Data Sample of Belle, Phys. Rev. Lett. 110, 131801 (2013), arXiv: 1208.4678 [hep-ex]
CrossRef ADS Google scholar
[209]
A. Dighe, D. Ghosh, K. M. Patel, and S. Raychaudhuri, Testing Times for Supersymmetry: Looking under the Lamp Post, arXiv: 1303.0721 [hep-ph]
[210]
G. Rolandi, LHC Results – Highlights, Lecture given at the European School of High Energy Physics (ESHEP2012), June 2012, Anjou, France, arXiv: 1211.3718 [hep-ex]
[211]
A. V. Gladyshev and D. I. Kazakov, Is (low Energy) SUSY still alive? Lecture given at the European School of High Energy Physics (ESHEP2012), June 2012, Anjou, France, arXiv: 1212.2548 [hep-ex]
[212]
P. Bectle, T. Plehn, and C. Sander, The Status of Supersymmetry after the LHCC Run 1, arXiv: 1506.03091 [hep-ex]
[213]
B. W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy-Neutrino Masses, Phys. Rev. Lett. 39, 165 (1977)
CrossRef ADS Google scholar
[214]
D. E. Kaplan, M. A. Luty, and K. M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79, 115016 (2009), arXiv: 0901.4117 [hep-ph]
CrossRef ADS Google scholar
[215]
H. Davoudiasl and R. N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14, 095011 (2012), arXiv: 1203.1247 [hep-ph]
CrossRef ADS Google scholar
[216]
P. Gondolo, Theory of low mass WIMPs, talk given at UCLA Dark Matter 2012
[217]
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
CrossRef ADS Google scholar
[218]
S. Weinberg, Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, John Wiley & Sons, 1972
[219]
P. J. E. Peebles, Principles of Physical Cosmology, Princeton University Press, 1993
[220]
A. Linde, Particle Physics and inflationary Cosmology, Hardwood, Chur, Switzerland, 1990
[221]
S. Weinberg, Cosmology, Oxford University Press, 2008
[222]
L. Bergström and A. Goobar, Cosmology and Particle Astrophysics, Second Edition, Springer, 2003
[223]
V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, 2005
[224]
D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation, Cosmology, Inflation, and the Origin of Structure, Cambridge University Press, 2009
CrossRef ADS Google scholar
[225]
A. Liddle and J. Loveday, Oxford Companion to Cosmology, Oxford University Press, 2008
[226]
K. W. Ford and J. A. Wheeler, Geons, Black Holes, and Quantum Foam: A Life in Physics, W.W. Norton & Company, Inc., 1998, p. 235
[227]
E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Proc. Natl. Acad. Sci. USA 15(3), 168 (1929)
CrossRef ADS Google scholar
[228]
P. P. Penzias and R. W. Wilson, A measurement of excess antenna temperature at 4048-Mc/s, Astrophys. J. 142, 419 (1965)
CrossRef ADS Google scholar
[229]
J. C. Mather, , A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite, Astrophys. J. 354, 237 (1990); J. C. Mather, , Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, Astrophys. J. 420, 439 (1994)
CrossRef ADS Google scholar
[230]
S. Weinberg, The First Three Minutes, Basic Books, 1993
[231]
A. G. Riess, , Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J. 116, 1009 (1989)
CrossRef ADS Google scholar
[232]
S. Perlmutter, , Measurements of Ω and from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999)
CrossRef ADS Google scholar
[233]
http://en.wikipedia.org/wiki/Stress-energy_tensor
[234]
S. M. Carroll, Lecture Notes on General Relativity, Ch. 8, arXiv: gr-qc/9712019
[235]
V. Eric, Linder, First Principles of Cosmology, Addison- Wesley, 1997
[236]
P. A. R. Ade, (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, arXiv: 1303.5076 [astro-ph.CO]
[237]
C. Kittel and H. Kroemer, Thermal Physics, W.H. Freemann and Company, 1998
[238]
K. A. Olive, The violent Universe: The Big Bang, lectures given at the 2009 European School of Hing- Energy Physics, Bautzen, Germany, June 2009, arXiv: 1005.3955 [hep-ph]
[239]
R. J. Scherer and M. S. Turner, On the relic, cosmic abundance of stable, weakly interacting massive particles, Phys. Rev. D 33, 1585 (1986); Erratum: Phys. Rev. D 34, 3263 (1986)
CrossRef ADS Google scholar
[240]
B. S. Ryden, Introduction to Cosmology, January 13, 2006.
[241]
L. Verde, (WMAP Collaboration), First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys. J. Suppl. 148, 175 (2003), arXiv: astroph/0302209
[242]
J. R. III Gott, M. Jurič, D. Schtegel, F. Hoyle, M. Vogeley, M. Tegmark, N. Bachall, and J. Brinkmann, A Map of the Universe, Astrophys. J. 624, 463 (2005), arXiv: astro-ph/0310571
[243]
R. E. Alpher, H. Bethe, and G. Gamov, The origin of chemical elements, J. Wash. Acad. Sci. 38(8), 288 (1948)
CrossRef ADS Google scholar
[244]
K. Jedamzik and M. Pospelov, Big bang nucleosynthesis and particle dark matter, New J. Phys. 11, 105028 (2009), arXiv: 0906.2087 [hep-ph]
CrossRef ADS Google scholar
[245]
K. Jedamzik and M. Pospelov, Big bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Sci. 60, 539 (2010), arXiv: 1011.1054 [hep-ph]
[246]
C. L. Bennett, (WMAP Collaboration), First year Wilkinson Microwave Anisotropy probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148, 1 (2003), arXiv: astro-ph/0302207
[247]
The following articles are given in Footnote 1, pp 159–160, [221] to which we refer for more details: V. F. Mukhanov, arXiv: astrp-ph/0303073, G. Steigman, arXiv: astro-ph/0307244, arXiv: astro-ph/0308511, arXiv: astro-ph/0501591, and arXiv: astro-ph/0511534
[248]
K. A. Olive, G. Steigman, and T. P. Walker, Primordial Nucleosynthesis: Theory and Observations, Phys. Rep. 333, 389 (2000), arXiv: astro-ph/9905320
CrossRef ADS Google scholar
[249]
D. N. Schramm and M. S. Turner, Big-bang nucleosynthesis enters the precision era, Rev. Mod. Phys. 70, 303 (1998), arXiv: astro-ph/9706069
CrossRef ADS Google scholar
[250]
S. Sarkar, Big Bang nucleosynthesis and physics beyond the Standard Model, Rep. Prog. Phys. 59, 1493 (1996), arXiv: hep-ph/9602260
CrossRef ADS Google scholar
[251]
J. Bernstein, L. S. Brown, and G. Feinbeerg, Cosmological helium production simplified, Rev. Mod. Phys. 61, 25 (1989)
CrossRef ADS Google scholar
[252]
R. Esmailzaedeh, G. D. Starkman, and S. Dimopoulos, Primordial nucleosynthesis without a computer, Astrophys. J. 387, 504 (1991)
CrossRef ADS Google scholar
[253]
V. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43, 669 (2003), arXiv: astro-ph/0303073
CrossRef ADS Google scholar
[254]
C. Hayashi, Proton-neutron concentration ratio in the expanding universe at the stages preceding the formation of the elements, Prog. Theor. Phys. 5, 224 (1950)
CrossRef ADS Google scholar
[255]
G. Steigman, D. N. Schramm, and J. Gunn, Cosmological limits to the number of massive leptons, Phys. Lett. B 66, 202 (1977)
CrossRef ADS Google scholar
[256]
K. A. Olive and G. Steigman, A new look at neutrino limits from big bang nucleosynthesis, Phys. Lett. B 354, 357 (1995)
CrossRef ADS Google scholar
[257]
B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, Pearson Education, 2007, Ch. 29
[258]
J. Bernstein, L. S. Brown, and G. Feinberg, Cosmological heavy-neutrino problem, Phys. Rev. D 32(12), 3261 (1985)
CrossRef ADS Google scholar
[259]
D. A. Dicus, E. W. Kolb, and V. L. Teplitz, cosmological upper bound on heavy-neutrino lifetimes, Phys. Rev. Lett. 39, 168 (1977)
CrossRef ADS Google scholar
[260]
E. W. Kolb and K. A. Olive, Lee-Weinberg bound reexamined, Phys. Rev. D 33(4), 1202 (1986) (in INSPIRE Search, fulltext available at the Fermilab Library Server)
CrossRef ADS Google scholar
[261]
M. T. Ressell and M. S. Turner, Comments Astrophys. 14, 323 (1990), Bull. Am. Astron. Soc. 22, 753 (1990) [Fermilab-pub-89/214-A, Oct. 1989]
[262]
A. Lasenby, Physics of Primary CMB Anisotropy
[263]
J. C. Mather, , A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) Satellite, Astrophys. J. 354, L37 (1990)
CrossRef ADS Google scholar
[264]
G. F Smoot, , Structure in the COBE Differential Microwave Radiometer First-year Maps, Astrophys. J. 396, L1 (1992)
CrossRef ADS Google scholar
[265]
R. Adam, (Planck Collaboration), Plank 2015 results. I. Overview of products and Scientific results, arXiv: 1502.01582 [astro-ph.CO]
[266]
P. A. R. Ade, (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589 [astro-ph.CO]
[267]
http://lambda.gsfc.nasa.gov
[268]
See: https://astro.ucla.edu/
[269]
Y. Itoh, K. Yahata, and M. Takada, A dipole anisotropy of galaxy distribution: Does the CMB rest-frame exist in the local universe? Phys. Rev. D 82, 043530 (2010), arXiv: 0912.1460 [astroph. CO]
CrossRef ADS Google scholar
[270]
G. Hinshaw, (WMAP Collaboration), Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data processing, sky maps, and basic results, Astrophys. J. Suppl. 180, 225 (2009)
CrossRef ADS Google scholar
[271]
Ya. B. Zel’dovich and R. A. Sunyaev, The Interaction of Matter and Radiation in a Hot-Model Universe, Astrophys. Space Sci. 4, 301 (1969); R. A. Sunyaev and Ya. B. Zel’dovich, The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies, Comments Astrophys. Space Phys. 2, 173 (1972)
CrossRef ADS Google scholar
[272]
J. E. Carlstrom, G. P. Hoder, and E. D. Reese, Cosmology with the Sunyaev–Zel’dovich Effect, Annu. Rev. Astron. Astrophys. 40, 643 (2002), arXiv: astroph/0208192
[273]
R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147, 73 (1987)
CrossRef ADS Google scholar
[274]
R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background, Gen. Relativ. Gravit. 39, 1929 (2007)
CrossRef ADS Google scholar
[275]
A. J. Nishizawa, Integrated Sachs Wolfe Effect and Rees Sciama Effect, Prog. Theor. Exp. Phys. 2014, 06B110 (2014), arXiv: 1404.5102 [astro-ph.CO]
[276]
W. Hu, CMB anisotropy tutorial
[277]
D. Langlois, Isocurvature cosmology perturbation and the CMB, C. R. Phys. 4, 953 (2003)
CrossRef ADS Google scholar
[278]
C. Gordon, Adiabatic and entropy perturbations in cosmology, arXiv: astro-ph/0112523
[279]
W. Hu and M. White, Acoustic signatures in the cosmic microwave background, Astrophys. J. 471, 30 (1996), arXiv: astro-ph/9602019
CrossRef ADS Google scholar
[280]
J. A. Peacok, Large-scale surverys and cosmic structure, 7. Anisotropies in the CMB
[281]
M. White, Big Bang Acoustics: Sound for the new born univers, 8. Removing Distortion
[282]
H. Jurki-Suonio, Cosmology I & II. See Chapters 12 and 13
[283]
U. Seljak, A Two-Fluid Approximation for Calculating the Cosmic Microwave Background Anisotropies, Astrophys. J. 435, L87 (1994), arXiv: astro-ph/9406050
CrossRef ADS Google scholar
[284]
W. Hu and N. Sugiyama, Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Astrophys. J. 444, 489 (1995), arXiv: astro-ph/9407093
CrossRef ADS Google scholar
[285]
M. White and J. D. Cohn, TACMB-1: The Theory of Anisotropies in the Cosmic Microwave Background (Bibliographic Resource Letter), Am. J. Phys. 70, 106 (2002), arXiv: astro-ph/0203120
CrossRef ADS Google scholar
[286]
See: http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
[287]
A wealth information on the Cosmic Bacground Explorer (CORE) is accessible on the web.
[288]
Information on the Wilkinson Microwave Anisotropy probe (WMAP) can be found on its official site
[289]
The Planck Spacecraft is an European Space Agency (ESA) experiment for the observation of the CMB anisotropy, lauched in May 2009. For a general description, see officila sites
[290]
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition, Academic Press, 1980
[291]
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Pub., 1970
[292]
D. Baumann Cosmology part III Mathematical Tripos, pp 80–81
[293]
H. Kurki-Suonio, Cosmological Perturbation Theory, Sept. 30, 2012
[294]
H. Kodama and M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78, 1 (1984)
CrossRef ADS Google scholar
[295]
J. Fritz, An introduction to the theory of hydrodynamiclimits
[296]
U. Seljak and M. Zaldarriaga, A line of sight approach to cosmic microwave background anisotropies, Astrophys. J. 469, 437 (1996), arXiv: astro-ph/9603033
CrossRef ADS Google scholar
[297]
A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of CMB anisotropies in closed FRW models, Astrophys. J. 538, 473 (2000), arXiv: astro-ph/991117710.1086/309179
CrossRef ADS Google scholar
[298]
M. Doran, CMBEASY: an Object Oriented Code for the Cosmic Microwave Background, JCAP 0510, 011 (2005), arXiv: astro-ph/0302138
[299]
J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, arXiv: 1104.2932 [astroph. CO]
[300]
D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, arXiv: 1104.2933 [astro-ph.CO]
[301]
J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM, arXiv: 1104.2934 [astro-ph.CO]
[302]
J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) IV: Efficient implementation of non-cold relics, arXiv: 1104.2935 [astroph. CO]
[303]
J. Lesgourgues, The Cosmic Linear Anisortropy Solving System (CLASS) III: Comparison with CMB for LambdaCDM, arXiv: 1104.2934 [astro-ph.CO]
[304]
The Planck news release on the epoch of the first stars can be found at http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_first_stars_ were_born_late
[305]
The list of Planck publications is at http://www.cosmos.esa.int/web/planck/publications.
[306]
S. Zaroubi, The Epoch of Reionization, arXiv: 1206.0267 [astro-ph.CO]
[307]
D. Scott and G. F. Smoot, Cosmic Microwave Background, PDB [13]
[308]
P. A. R. Ade, (Planck Collaboration), Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys. 571, A1 (2014), arXiv: 1303.5062 [astro-ph.CO]
CrossRef ADS Google scholar
[309]
P. A. R. Ade, (Planck Collaboration), Planck 2013 results. XV. CMB power spectra and likelihood, Astron. Astrophys. 571, A15 (2014), arXiv: 1303.5075 [astroph.CO]
CrossRef ADS Google scholar
[310]
G. Hinshaw, (WMAP Collaboration), Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208, 19 (2013), arXiv: 1212.5226 [asrtroph. CO]
[311]
C. L. Bennett, (WMAP Collaboration), Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208, 20 (2013), arXiv: 1212.5225 [astro-ph.CO]
[312]
For a list of WMAP scientific publications, see: http://lambda.gsfc.nasa.gov/product/map/current/map_bibliography.cfm
[313]
D. Larson, J. L. Weiland, G. Hinshaw, and C. L. Bennett, Comparing Planck and WMAP9: Maps, Spectra, and Parameters, arXiv: 1409.7718 [astro-ph.CO]
[314]
D. W. Hogg, Distance measures in cosmology, arXiv: astro-ph/9905116
[315]
T. M. Davis and C. H. Lineweaver, Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe, PASA 21, 97 (2004), arXiv: astro-ph/0310808
[316]
C. H. Lineweaver and T. M. Davis, Misconceptions about the big bang, Sci. Am. 292(3), 24 (2005)
CrossRef ADS Google scholar
[317]
W. Rindler, Visual Horizons in World models, Mon. Not. Roy. Ast. Soc. 116, 662 (1956)
CrossRef ADS Google scholar
[318]
A. Loeb, The Long-Term Future of Extragalactic Astronomy, Phys. Rev. D 65, 047301 (2002), arXiv: astroph/ 0107568
[319]
http://www.nasa.gov/news/releases/archives/index.html#.UexHS237tuD
[320]
H. Bradt and S. Olbert, Liouville’s Theorem, Suppl. to Ch. 3 of Astrophysical Processes by the same authors.
[321]
J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons, Inc., 1975
[322]
H. Goldstein, Classical Mechanics, Addison-Wesley, 1950, pp 266–268
[323]
C. Kittel and H. Kroemer, Thermal Physics, W.H. Freeman and Company, 1998
[324]
S. Dodelson and M. S. Turner, Nonequilibrium neutrino statistical mechanics in the expanding Universe, Phys. Rev. D 46(8), 3372 (1992)
CrossRef ADS Google scholar
[325]
Wolfram Alpha, Wolfram Research Company: http://www.wolframalpha.com

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(17860 KB)

Accesses

Citations

Detail

Sections
Recommended

/