Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability

Feng Chen, Ai-Guo Xu, Guang-Cai Zhang

PDF(3788 KB)
PDF(3788 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (6) : 114703. DOI: 10.1007/s11467-016-0603-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability

Author information +
History +

Abstract

The two-dimensional Rayleigh–Taylor instability problem is simulated with a multiple-relaxation-time discrete Boltzmann model with a gravity term. Viscosity, heat conductivity, and Prandtl number effects are probed from macroscopic and nonequilibrium viewpoints. In the macro sense, both viscosity and heat conduction show a significant inhibitory effect in the reacceleration stage, which is mainly achieved by inhibiting the development of the Kelvin–Helmholtz instability. Before this, the Prandtl number effect is not sensitive. Viscosity, heat conductivity, and Prandtl number effects on nonequilibrium manifestations and the degree of correlation between the nonuniformity and the nonequilibrium strength in the complex flow are systematically investigated.

Keywords

discrete Boltzmann model/method / multiple-relaxation-time / Rayleigh–Taylor instability / nonequilibrium

Cite this article

Download citation ▾
Feng Chen, Ai-Guo Xu, Guang-Cai Zhang. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability. Front. Phys., 2016, 11(6): 114703 https://doi.org/10.1007/s11467-016-0603-4

References

[1]
L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc. s1–14(1), 170 (1882)
[2]
G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (I), P. Roy. Soc. A 201(1065), 192 (1950)
CrossRef ADS Google scholar
[3]
W. H. Ye, W. Y. Zhang, G. N. Chen, C. Q. Jin, and J. Zhang, Numerical simulations of the FCT method on Rayleigh–Taylor and Richtmyer–Meshkov instabilities, Chin. J. Comput. Phys. 15(3), 277 (1998)
[4]
X. L. Li, B. X. Jin, and J. Glimm, Numerical study for the three dimensional Rayleigh–Taylor instability through the TVD/AC scheme and parallel computation, J. Comput. Phys. 126(2), 343 (1996)
CrossRef ADS Google scholar
[5]
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y. J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys. 169(2), 708 (2001)
CrossRef ADS Google scholar
[6]
Y. K. Li and A. Umemura, Mechanism of the large surface deformation caused by Rayleigh–Taylor instability at large Atwood number, J. Appl. Math. Phys. 2(10), 971 (2014)
CrossRef ADS Google scholar
[7]
M. S. Shadloo, A. Zainali, and M. Yildiz, Simulation of single mode Rayleigh–Taylor instability by SPH method, Comput. Mech. 51(5), 699 (2013)
CrossRef ADS Google scholar
[8]
L. Duchemin, C. Josserand, and P. Clavin, Asymptotic behavior of the Rayleigh–Taylor instability, Phys. Rev. Lett. 94(22), 224501 (2005)
CrossRef ADS Google scholar
[9]
A. W. Cook and P. E. Dimotakis, Transition stages of Rayleigh–Taylor instability between miscible fluids, J. Fluid Mech. 443, 69 (2001)
CrossRef ADS Google scholar
[10]
A. Celani, A. Mazzino, and L. Vozella, Rayleigh–Taylor turbulence in two dimensions, Phys. Rev. Lett. 96(13), 134504 (2006)
CrossRef ADS Google scholar
[11]
W. Cabot, Comparison of two- and three-dimensional simulations of miscible Rayleigh–Taylor instability, Phys. Fluids 18(4), 045101 (2006)
CrossRef ADS Google scholar
[12]
A. Celani, A. Mazzino, P. Muratore-Ginanneschi, and L. Vozella, Phase-field model for the Rayleigh–Taylor instability of immiscible fluids, J. Fluid Mech. 622, 115 (2009)
CrossRef ADS Google scholar
[13]
R. Betti and J. Sanz, Bubble acceleration in the ablative Rayleigh–Taylor instability, Phys. Rev. Lett. 97(20), 205002 (2006)
CrossRef ADS Google scholar
[14]
M. R. Gupta, L. Mandal, S. Roy, and M. Khan, Effect of magnetic field on temporal development of Rayleigh– Taylor instability induced interfacial nonlinear structure, Phys. Plasmas 17(1), 012306 (2010)
CrossRef ADS Google scholar
[15]
P. K. Sharma, R. P. Prajapati, and R. K. Chhajlani, Effect of surface tension and rotation on Rayleigh–Taylor instability of two superposed fluids with suspended particles, Acta Phys. Pol. A 118(4), 576 (2010)
CrossRef ADS Google scholar
[16]
R. Banerjee, L. K. Mandal, S. Roy, M. Khan, and M. R. Gupta, Combined effect of viscosity and vorticity on single mode Rayleigh–Taylor instability bubble growth, Phys. Plasmas 18(2), 022109 (2011)
CrossRef ADS Google scholar
[17]
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
CrossRef ADS Google scholar
[18]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
[19]
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222(3), 145 (1992)
CrossRef ADS Google scholar
[20]
A. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E 67(5), 056105 (2003)
CrossRef ADS Google scholar
[21]
A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E 74(1), 011505 (2006)
CrossRef ADS Google scholar
[22]
A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A 362(1), 42 (2006)
CrossRef ADS Google scholar
[23]
X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)
CrossRef ADS Google scholar
[24]
X. Shan and H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49(4), 2941 (1994)
CrossRef ADS Google scholar
[25]
G. Gonnella, E. Orlandini, and J. M. Yeomans, Spinodal decomposition to a lamellar phase: Effects of hydrodynamic flow, Phys. Rev. Lett. 78(9), 1695 (1997)
CrossRef ADS Google scholar
[26]
H. Fang, Z. Wang, Z. Lin, and M. Liu, Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. Rev. E 65(5), 051925 (2002)
CrossRef ADS Google scholar
[27]
Z. Guo and C. Shu, Lattice Boltzmann Method and Its Applications in Engineering (advances in computational fluid dynamics), World Scientific Publishing Company, 2013
CrossRef ADS Google scholar
[28]
A. Xu, G. Zhang, Y. Li, and H. Li, Modeling and simulation of nonequilibrium and multiphase complex systemslattice Boltzmann kinetic theory and application, Prog. Phys. 34(3), 136 (2014)
[29]
R. Zhang, Y. Xu, B. Wen, N. Sheng, and H. Fang, Enhanced permeation of a hydrophobic fluid through particles with hydrophobic and hydrophilic patterned surfaces, Sci. Rep. 4, 5738 (2014)
CrossRef ADS Google scholar
[30]
X. B. Nie, Y. H. Qian, G. D. Doolen, and S. Y. Chen, Lattice Boltzmann simulation of the two-dimensional Rayleigh–Taylor instability, Phys. Rev. E 58(5), 6861 (1998)
CrossRef ADS Google scholar
[31]
X. Y. He, S. Y. Chen, and R. Y. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability, J. Comput. Phys. 152(2), 642 (1999)
CrossRef ADS Google scholar
[32]
X. Y. He, R. Y. Zhang, S. Y. Chen, and G. D. Doolen, On the three-dimensional Rayleigh–Taylor instability, Phys. Fluids 11(5), 1143 (1999)
CrossRef ADS Google scholar
[33]
R. Y. Zhang, X. Y. He, and S. Y. Chen, Interface and surface tension in incompressible lattice Boltzmann multiphase model, Comput. Phys. Commun. 129(1-3), 121 (2000)
CrossRef ADS Google scholar
[34]
Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E 85(2), 026704 (2012)
CrossRef ADS Google scholar
[35]
G. J. Liu and Z. L. Guo, Effects of Prandtl number on mixing process in miscible Rayleigh–Taylor instability: A lattice Boltzmann study, Int. J. Numer. Method. H. 23(1), 176 (2013)
CrossRef ADS Google scholar
[36]
H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phasefield- based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)
CrossRef ADS Google scholar
[37]
M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, and S. Succi, Lattice Boltzmann method with self-consistent thermo-hydrodynamic equilibria, J. Fluid Mech. 628, 299 (2009)
CrossRef ADS Google scholar
[38]
A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, and F. Toschi, Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh–Taylor systems, Phys. Fluids 22(5), 055101 (2010)
CrossRef ADS Google scholar
[39]
L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, and R. Tripiccione, Reactive Rayleigh–Taylor systems: Front propagation and non-stationarity, Europhys. Lett. 94(5), 54004 (2011)
CrossRef ADS Google scholar
[40]
A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
CrossRef ADS Google scholar
[41]
B. Yan, A. Xu, G. Zhang, Y. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. 8(1), 94 (2013)
CrossRef ADS Google scholar
[42]
C. Lin, A. Xu, G. Zhang, and Y. Li, Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena, Commum. Theor. Phys. 62(5), 737 (2014)
CrossRef ADS Google scholar
[43]
A. Xu, C. Lin, G. Zhang, and Y. Li, Multiple-relaxationtime lattice Boltzmann kinetic model for combustion, Phys. Rev. E 91(4), 043306 (2015)
CrossRef ADS Google scholar
[44]
A. Xu, G. Zhang, and Y. Ying, Progess of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)
[45]
C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef ADS Google scholar
[46]
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame (2016) (in press)
CrossRef ADS Google scholar
[47]
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11 11(26), 5336 (2015)
[48]
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
CrossRef ADS Google scholar
[49]
F. Chen, A. Xu, G. Zhang, Y. Wang, Two-dimensional MRT LB model for compressible and incompressible flows, Front. Phys. 9(2), 246 (2014)
CrossRef ADS Google scholar
[50]
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Thermo-hydrodynamic non-equilibrium effects on compressible Rayleigh–Taylor instability, arXiv: 1507.01107
[51]
D. Layzer, On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955)
CrossRef ADS Google scholar
[52]
S. F. Li, W. H. Ye, Y. Zhang, S. Shu, and A. G. Xiao, High order FD-WENO schemes for Rayleigh–Taylor instability problems, Chin. J. Comput. Phys. 25(4), 379 (2008)
[53]
D. Youngs, Numerical simulation of turbulent mixing by Rayleigh–Taylor instability, Physica D 12(1–3), 32 (1984)
[54]
Y. D. Zhang, Modeling and research of detonation based on discrete Boltzmann method, A Dissertation Submitted for the Degree of Master, Beihang University, 2015

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary
PDF(3788 KB)

Accesses

Citations

Detail

Sections
Recommended

/