On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs
Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu
On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs
One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.
quantum information / Greenberger–Horne–Zeilinger state / frequency comb
[1] |
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
CrossRef
ADS
Google scholar
|
[2] |
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
CrossRef
ADS
Google scholar
|
[3] |
J. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 515 (2000)
CrossRef
ADS
Google scholar
|
[4] |
A. R. Calderbank and P. W. Shor, Good quantum error correcting codes exist, Phys. Rev. A 54(2), 1098 (1996)
CrossRef
ADS
Google scholar
|
[5] |
R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New J. Phys. 9(6), 199 (2007)
CrossRef
ADS
Google scholar
|
[6] |
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. AbdelAty, Robust general nuser authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
CrossRef
ADS
Google scholar
|
[7] |
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)
CrossRef
ADS
Google scholar
|
[8] |
X. Hu, C. Zhang, C. Zhang, B. Liu, Y. Huang, Y. Han, C. Li, and G. Guo, Experimental certification for nonclassical teleportation, Quantum Eng. 1(2), e13 (2019)
CrossRef
ADS
Google scholar
|
[9] |
J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Multi-photon entanglement and interferometry, Rev. Mod. Phys. 84(2), 777 (2012)
CrossRef
ADS
Google scholar
|
[10] |
Y. Huang, B. Liu, L. Peng, Y. Li, L. Li, C. Li, and G. Guo, Experimental generation of an eight-photon Greenberger– Horne–Zeilinger state, Nat. Commun. 2(1), 546 (2011)
CrossRef
ADS
Google scholar
|
[11] |
X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
CrossRef
ADS
Google scholar
|
[12] |
H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, 12-photon entanglement and scalable scattershot boson sampling with optimal entangledphoton pairs from parametric down-conversion, Phys. Rev. Lett. 121(25), 250505 (2018)
CrossRef
ADS
Google scholar
|
[13] |
X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
CrossRef
ADS
Google scholar
|
[14] |
M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits, Nat. Photonics 12(12), 759 (2018)
CrossRef
ADS
Google scholar
|
[15] |
Q. Zhang, P. Xu, and S. Zhu, Quantum photonic network on chip, Chin. Phys. B 27(5), 054207 (2018)
CrossRef
ADS
Google scholar
|
[16] |
J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Integrated photonic quantum technologies, Nat. Photonics 14(5), 273 (2020)
CrossRef
ADS
Google scholar
|
[17] |
X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, L. Thomas, O. Sean, K. Laurent, G. D. Marshall, S. Raffaele, and T. C. Ralph, Large-scale silicon quantum photonics implementing arbitrary two-qubit processing, Nat. Photonics 12(9), 534 (2018)
CrossRef
ADS
Google scholar
|
[18] |
J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Multidimensional quantum entanglement with large-scale integrated optics, Science 360(6386), 285 (2018)
CrossRef
ADS
Google scholar
|
[19] |
R. Terry, Why I am optimistic about the silicon-photonic route to quantum computing, APL Photonics 2, 030901 (2016)
CrossRef
ADS
Google scholar
|
[20] |
T. Feng, X. Zhang, Y. Tian, and Q. Feng, On-chip multiphoton entangled states by path identity, Int. J. Theor. Phys. 58(11), 3726 (2019)
CrossRef
ADS
Google scholar
|
[21] |
J. C. Adcock, C. Vigliar, R. Santagati, J. W. Silverstone, and M. G. Thompson, Programmable four-photon graph states on a silicon chip, Nat. Commun. 10(1), 3528 (2019)
CrossRef
ADS
Google scholar
|
[22] |
P. Zhu, S. Xue, Q. Zheng, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, M. Deng, J. Wu, and P. Xu, Reconfigurable multiphoton entangled states based on quantum photonic chips, Opt. Express 28(18), 26792 (2020)
CrossRef
ADS
Google scholar
|
[23] |
M. Kues, C. Reimer, P. Roztocki, L. R. Cortes, S. Sciara, B. Wetzel, Y. Zhang, A. C. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature 546(7660), 622 (2017)
CrossRef
ADS
Google scholar
|
[24] |
C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. W. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Generation of multi-photon entangled quantum states by means of integrated frequency combs, Science 351(6278), 1176 (2016)
CrossRef
ADS
Google scholar
|
[25] |
M. Chen, N. C. Menicucci, and O. Pfister, Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb, Phys. Rev. Lett. 112(12), 120505 (2014)
CrossRef
ADS
Google scholar
|
[26] |
B. H. Wu, R. N. Alexander, S. Liu, and Z. Zhang, Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform, Phys. Rev. Research 2(2), 023138 (2020)
CrossRef
ADS
Google scholar
|
[27] |
M. Krenn, X. Gu, and A. Zeilinger, Quantum experiments and graphs: Multiparty states as coherent super-positions of perfect matchings, Phys. Rev. Lett. 119(24), 240403 (2017)
CrossRef
ADS
Google scholar
|
[28] |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
CrossRef
ADS
Google scholar
|
[29] |
X. Gu, M. Erhard, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (ii): Quantum interference, computation, and state generation, Proc. Natl. Acad. Sci. USA 116(10), 4147 (2019)
CrossRef
ADS
Google scholar
|
[30] |
X. Gu, L. Chen, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (iii): High-dimensional and multiparticle entanglement, Phys. Rev. A 99(3), 032338 (2019)
CrossRef
ADS
Google scholar
|
[31] |
C. Wu, Y. Liu, X. Gu, S. Xue, X. Yu, Y. Kong, X. Qiang, J. Wu, Z. Zhu, and P. Xu, Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings, Chin. Phys. B 28(10), 104211 (2019)
CrossRef
ADS
Google scholar
|
[32] |
C. Wu, Y. Liu, X. Gu, X. Yu, Y. Kong, Y. Wang, X. Qiang, J. Wu, Z. Zhu, X. Yang, and P. Xu, Bright photon-pair source based on a silicon dual-Mach–Zehnder microring, Sci. China Phys. Mech. Astron. 63(2), 220362 (2020)
CrossRef
ADS
Google scholar
|
[33] |
Y. Liu, C. Wu, X. Gu, Y. Kong, X. Yu, R. Ge, X. Cai, X. Qiang, J. Wu, X. Yang, and P. Xu, High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring, Opt. Lett. 45(1), 73 (2020)
CrossRef
ADS
Google scholar
|
[34] |
P. Zhu, Y. Liu, C. Wu, S. Xue, X. Yu, Q. Zheng, Y. Wang, X. Qiang, J. Wu, and P. Xu, Near 100% spectral-purity photons from reconfigurable micro-rings, Chin. Phys. B 29, 114201 (2020)
CrossRef
ADS
Google scholar
|
[35] |
D. Taillaert, P. I. Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, A compact twodimensional grating coupler used as a polarization splitter, IEEE Photonics Technol. Lett. 15(9), 1249 (2003)
CrossRef
ADS
Google scholar
|
[36] |
J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, Chip-to-chip quantum photonic interconnect by path-polarization interconversion, Optica 3(4), 407 (2016)
CrossRef
ADS
Google scholar
|
[37] |
M. Liscidini and J. E. Sipe, Scalable and efficient source of entangled frequency bins, Opt. Lett. 44(11), 2625 (2019)
CrossRef
ADS
Google scholar
|
[38] |
X. Gu, L. Chen, and M. Krenn, Quantum experiments and hypergraphs: Multiphoton sources for quantum interference, quantum computation, and quantum entanglement, Phys. Rev. A 101(3), 033816 (2020)
CrossRef
ADS
Google scholar
|
[39] |
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Measurement of qubits, Phys. Rev. A 64(5), 052312 (2001)
CrossRef
ADS
Google scholar
|
[40] |
O. Gühne and G. Toth, Entanglement detection, Phys. Rep. 474(1–6), 1 (2009)
CrossRef
ADS
Google scholar
|
[41] |
X. Chen, L. Jiang, and Z. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger–Horne– Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)
CrossRef
ADS
Google scholar
|
[42] |
J. Tang, Z. Hou, Q. Xu, G. Xiang, C. Li, and G. Guo, Polarization-independent coherent spatial-temporal interface with low loss, Phys. Rev. Appl. 12(6), 064058 (2019)
CrossRef
ADS
Google scholar
|
[43] |
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
CrossRef
ADS
Google scholar
|
[44] |
L. Lu, L. Xia, Z. Chen, L. Chen, T. Yu, T. Tao, W. Ma, Y. Pan, X. Cai, Y. Lu, S. Zhu, and X. S. Ma, Threedimensional entanglement on a silicon chip, NPJ Quantum Inf. 6(1), 30 (2020)
CrossRef
ADS
Google scholar
|
[45] |
L. Xiao, G. Long, F. Deng, and J. Pan, Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69(5), 052307 (2004)
CrossRef
ADS
Google scholar
|
[46] |
Z. Man, Y. Xia, and N. B. An, Quantum secure direct communication by using GHZ states and entanglement swapping, J. Phys. B 39(18), 3855 (2006)
CrossRef
ADS
Google scholar
|
[47] |
S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hubel, and R. Ursin, An entanglement-based wavelengthmultiplexed quantum communication network, Nature 564(7735), 225 (2018)
CrossRef
ADS
Google scholar
|
[48] |
P. Arrighi and L. Salvail, Blind quantum computation, Int. J. Quant. Inf. 04(05), 883 (2006)
CrossRef
ADS
Google scholar
|
[49] |
S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Demonstration of blind quantum computing, Science 335(6066), 303 (2012)
CrossRef
ADS
Google scholar
|
[50] |
J. M. Lukens and P. Lougovski, Frequency-encoded photonic qubits for scalable quantum information processing, Optica 4(1), 8 (2017)
CrossRef
ADS
Google scholar
|
[51] |
H. H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, Quantum interference and correlation control of frequency-bin qubits, Optica 5(11), 1455 (2018)
CrossRef
ADS
Google scholar
|
[52] |
S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, Polarization-entanglement-conserving frequency conversion of photons, Phys. Rev. A 85(1), 013845 (2012)
CrossRef
ADS
Google scholar
|
[53] |
M. Krenn, J. Kottmann, N. Tischler, and A. Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum optical experiments, arXiv: 2005.06443 [quant-ph] (2020)
|
/
〈 | 〉 |