On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs

Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu

PDF(5476 KB)
PDF(5476 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (6) : 61501. DOI: 10.1007/s11467-020-1010-4
RESEARCH ARTICLE
RESEARCH ARTICLE

On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs

Author information +
History +

Abstract

One of the most important multipartite entangled states, Greenberger–Horne–Zeilinger state (GHZ), serves as a fundamental resource for quantum foundation test, quantum communication and quantum computation. To increase the number of entangled particles, significant experimental efforts should been invested due to the complexity of optical setup and the difficulty in maintaining the coherence condition for high-fidelity GHZ state. Here, we propose an ultra-integrated scalable on-chip GHZ state generation scheme based on frequency combs. By designing several microrings pumped by different lasers, multiple partially overlapped quantum frequency combs are generated to supply as the basis for on-chip polarization-encoded GHZ state with each qubit occupying a certain spectral mode. Both even and odd numbers of GHZ states can be engineered with constant small number of integrated components and easily scaled up on the same chip by only adjusting one of the pump wavelengths. In addition, we give the on-chip design of projection measurement for characterizing GHZ states and show the reconfigurability of the state. Our proposal is rather simple and feasible within the existing fabrication technologies and we believe it will boost the development of multiphoton technologies.

Keywords

quantum information / Greenberger–Horne–Zeilinger state / frequency comb

Cite this article

Download citation ▾
Pingyu Zhu, Qilin Zheng, Shichuan Xue, Chao Wu, Xinyao Yu, Yang Wang, Yingwen Liu, Xiaogang Qiang, Junjie Wu, Ping Xu. On-chip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs. Front. Phys., 2020, 15(6): 61501 https://doi.org/10.1007/s11467-020-1010-4

References

[1]
A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
CrossRef ADS Google scholar
[2]
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
CrossRef ADS Google scholar
[3]
J. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 515 (2000)
CrossRef ADS Google scholar
[4]
A. R. Calderbank and P. W. Shor, Good quantum error correcting codes exist, Phys. Rev. A 54(2), 1098 (1996)
CrossRef ADS Google scholar
[5]
R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New J. Phys. 9(6), 199 (2007)
CrossRef ADS Google scholar
[6]
A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. AbdelAty, Robust general nuser authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)
CrossRef ADS Google scholar
[7]
K. Wang, X. T. Yu, and Z. C. Zhang, Two-qubit entangled state teleportation via optimal POVM and partially entangled GHZ state, Front. Phys. 13(5), 130320 (2018)
CrossRef ADS Google scholar
[8]
X. Hu, C. Zhang, C. Zhang, B. Liu, Y. Huang, Y. Han, C. Li, and G. Guo, Experimental certification for nonclassical teleportation, Quantum Eng. 1(2), e13 (2019)
CrossRef ADS Google scholar
[9]
J. Pan, Z. Chen, C. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, Multi-photon entanglement and interferometry, Rev. Mod. Phys. 84(2), 777 (2012)
CrossRef ADS Google scholar
[10]
Y. Huang, B. Liu, L. Peng, Y. Li, L. Li, C. Li, and G. Guo, Experimental generation of an eight-photon Greenberger– Horne–Zeilinger state, Nat. Commun. 2(1), 546 (2011)
CrossRef ADS Google scholar
[11]
X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
CrossRef ADS Google scholar
[12]
H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, 12-photon entanglement and scalable scattershot boson sampling with optimal entangledphoton pairs from parametric down-conversion, Phys. Rev. Lett. 121(25), 250505 (2018)
CrossRef ADS Google scholar
[13]
X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
CrossRef ADS Google scholar
[14]
M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits, Nat. Photonics 12(12), 759 (2018)
CrossRef ADS Google scholar
[15]
Q. Zhang, P. Xu, and S. Zhu, Quantum photonic network on chip, Chin. Phys. B 27(5), 054207 (2018)
CrossRef ADS Google scholar
[16]
J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Integrated photonic quantum technologies, Nat. Photonics 14(5), 273 (2020)
CrossRef ADS Google scholar
[17]
X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, L. Thomas, O. Sean, K. Laurent, G. D. Marshall, S. Raffaele, and T. C. Ralph, Large-scale silicon quantum photonics implementing arbitrary two-qubit processing, Nat. Photonics 12(9), 534 (2018)
CrossRef ADS Google scholar
[18]
J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Multidimensional quantum entanglement with large-scale integrated optics, Science 360(6386), 285 (2018)
CrossRef ADS Google scholar
[19]
R. Terry, Why I am optimistic about the silicon-photonic route to quantum computing, APL Photonics 2, 030901 (2016)
CrossRef ADS Google scholar
[20]
T. Feng, X. Zhang, Y. Tian, and Q. Feng, On-chip multiphoton entangled states by path identity, Int. J. Theor. Phys. 58(11), 3726 (2019)
CrossRef ADS Google scholar
[21]
J. C. Adcock, C. Vigliar, R. Santagati, J. W. Silverstone, and M. G. Thompson, Programmable four-photon graph states on a silicon chip, Nat. Commun. 10(1), 3528 (2019)
CrossRef ADS Google scholar
[22]
P. Zhu, S. Xue, Q. Zheng, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, M. Deng, J. Wu, and P. Xu, Reconfigurable multiphoton entangled states based on quantum photonic chips, Opt. Express 28(18), 26792 (2020)
CrossRef ADS Google scholar
[23]
M. Kues, C. Reimer, P. Roztocki, L. R. Cortes, S. Sciara, B. Wetzel, Y. Zhang, A. C. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, On-chip generation of high-dimensional entangled quantum states and their coherent control, Nature 546(7660), 622 (2017)
CrossRef ADS Google scholar
[24]
C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. W. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Generation of multi-photon entangled quantum states by means of integrated frequency combs, Science 351(6278), 1176 (2016)
CrossRef ADS Google scholar
[25]
M. Chen, N. C. Menicucci, and O. Pfister, Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb, Phys. Rev. Lett. 112(12), 120505 (2014)
CrossRef ADS Google scholar
[26]
B. H. Wu, R. N. Alexander, S. Liu, and Z. Zhang, Quantum computing with multidimensional continuous-variable cluster states in a scalable photonic platform, Phys. Rev. Research 2(2), 023138 (2020)
CrossRef ADS Google scholar
[27]
M. Krenn, X. Gu, and A. Zeilinger, Quantum experiments and graphs: Multiparty states as coherent super-positions of perfect matchings, Phys. Rev. Lett. 119(24), 240403 (2017)
CrossRef ADS Google scholar
[28]
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
CrossRef ADS Google scholar
[29]
X. Gu, M. Erhard, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (ii): Quantum interference, computation, and state generation, Proc. Natl. Acad. Sci. USA 116(10), 4147 (2019)
CrossRef ADS Google scholar
[30]
X. Gu, L. Chen, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (iii): High-dimensional and multiparticle entanglement, Phys. Rev. A 99(3), 032338 (2019)
CrossRef ADS Google scholar
[31]
C. Wu, Y. Liu, X. Gu, S. Xue, X. Yu, Y. Kong, X. Qiang, J. Wu, Z. Zhu, and P. Xu, Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings, Chin. Phys. B 28(10), 104211 (2019)
CrossRef ADS Google scholar
[32]
C. Wu, Y. Liu, X. Gu, X. Yu, Y. Kong, Y. Wang, X. Qiang, J. Wu, Z. Zhu, X. Yang, and P. Xu, Bright photon-pair source based on a silicon dual-Mach–Zehnder microring, Sci. China Phys. Mech. Astron. 63(2), 220362 (2020)
CrossRef ADS Google scholar
[33]
Y. Liu, C. Wu, X. Gu, Y. Kong, X. Yu, R. Ge, X. Cai, X. Qiang, J. Wu, X. Yang, and P. Xu, High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring, Opt. Lett. 45(1), 73 (2020)
CrossRef ADS Google scholar
[34]
P. Zhu, Y. Liu, C. Wu, S. Xue, X. Yu, Q. Zheng, Y. Wang, X. Qiang, J. Wu, and P. Xu, Near 100% spectral-purity photons from reconfigurable micro-rings, Chin. Phys. B 29, 114201 (2020)
CrossRef ADS Google scholar
[35]
D. Taillaert, P. I. Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, A compact twodimensional grating coupler used as a polarization splitter, IEEE Photonics Technol. Lett. 15(9), 1249 (2003)
CrossRef ADS Google scholar
[36]
J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, Chip-to-chip quantum photonic interconnect by path-polarization interconversion, Optica 3(4), 407 (2016)
CrossRef ADS Google scholar
[37]
M. Liscidini and J. E. Sipe, Scalable and efficient source of entangled frequency bins, Opt. Lett. 44(11), 2625 (2019)
CrossRef ADS Google scholar
[38]
X. Gu, L. Chen, and M. Krenn, Quantum experiments and hypergraphs: Multiphoton sources for quantum interference, quantum computation, and quantum entanglement, Phys. Rev. A 101(3), 033816 (2020)
CrossRef ADS Google scholar
[39]
D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Measurement of qubits, Phys. Rev. A 64(5), 052312 (2001)
CrossRef ADS Google scholar
[40]
O. Gühne and G. Toth, Entanglement detection, Phys. Rep. 474(1–6), 1 (2009)
CrossRef ADS Google scholar
[41]
X. Chen, L. Jiang, and Z. Xu, Precise detection of multipartite entanglement in four-qubit Greenberger–Horne– Zeilinger diagonal states, Front. Phys. 13(5), 130317 (2018)
CrossRef ADS Google scholar
[42]
J. Tang, Z. Hou, Q. Xu, G. Xiang, C. Li, and G. Guo, Polarization-independent coherent spatial-temporal interface with low loss, Phys. Rev. Appl. 12(6), 064058 (2019)
CrossRef ADS Google scholar
[43]
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
CrossRef ADS Google scholar
[44]
L. Lu, L. Xia, Z. Chen, L. Chen, T. Yu, T. Tao, W. Ma, Y. Pan, X. Cai, Y. Lu, S. Zhu, and X. S. Ma, Threedimensional entanglement on a silicon chip, NPJ Quantum Inf. 6(1), 30 (2020)
CrossRef ADS Google scholar
[45]
L. Xiao, G. Long, F. Deng, and J. Pan, Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69(5), 052307 (2004)
CrossRef ADS Google scholar
[46]
Z. Man, Y. Xia, and N. B. An, Quantum secure direct communication by using GHZ states and entanglement swapping, J. Phys. B 39(18), 3855 (2006)
CrossRef ADS Google scholar
[47]
S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hubel, and R. Ursin, An entanglement-based wavelengthmultiplexed quantum communication network, Nature 564(7735), 225 (2018)
CrossRef ADS Google scholar
[48]
P. Arrighi and L. Salvail, Blind quantum computation, Int. J. Quant. Inf. 04(05), 883 (2006)
CrossRef ADS Google scholar
[49]
S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Demonstration of blind quantum computing, Science 335(6066), 303 (2012)
CrossRef ADS Google scholar
[50]
J. M. Lukens and P. Lougovski, Frequency-encoded photonic qubits for scalable quantum information processing, Optica 4(1), 8 (2017)
CrossRef ADS Google scholar
[51]
H. H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, Quantum interference and correlation control of frequency-bin qubits, Optica 5(11), 1455 (2018)
CrossRef ADS Google scholar
[52]
S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, Polarization-entanglement-conserving frequency conversion of photons, Phys. Rev. A 85(1), 013845 (2012)
CrossRef ADS Google scholar
[53]
M. Krenn, J. Kottmann, N. Tischler, and A. Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum optical experiments, arXiv: 2005.06443 [quant-ph] (2020)

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(5476 KB)

Accesses

Citations

Detail

Sections
Recommended

/