Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms

Yang Liu, Le Luo

PDF(1289 KB)
PDF(1289 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 12504. DOI: 10.1007/s11467-020-1003-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms

Author information +
History +

Abstract

Chemistry in the ultracold regime enables fully quantum-controlled interactions between atoms and molecules, leading to the discovery of the hidden mechanisms in chemical reactions which are usually curtained by thermal averaging in the high temperature. Recently a couple of diatomic molecules have been cooled to ultracold regime based on laser cooling techniques, but the chemistry associated with these simple molecules is highly limited. In comparison, free radicals play a major role in many important chemical reactions, but yet to be cooled to submillikelvin temperature. Here we propose a novel method of decelerating CH3, the simplest polyatomic free radical, with lithium atoms simultaneously by travelling wave magnetic decelerator. This scheme paves the way towards co-trapping CH3 and lithium, so that sympathetical cooling can be used to preparing ultracold free radical sample.

Keywords

travelling wave magnetic decelerator / simultaneous deceleration / methyl radical

Cite this article

Download citation ▾
Yang Liu, Le Luo. Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms. Front. Phys., 2021, 16(1): 12504 https://doi.org/10.1007/s11467-020-1003-3

References

[1]
M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
CrossRef ADS Google scholar
[2]
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
CrossRef ADS Google scholar
[3]
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef ADS Google scholar
[4]
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
CrossRef ADS Google scholar
[5]
A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
CrossRef ADS Google scholar
[6]
A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
CrossRef ADS Google scholar
[7]
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
CrossRef ADS Google scholar
[8]
N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
CrossRef ADS Google scholar
[9]
R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
CrossRef ADS Google scholar
[10]
M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
CrossRef ADS Google scholar
[11]
S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)
CrossRef ADS Google scholar
[12]
B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
CrossRef ADS Google scholar
[13]
O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
CrossRef ADS Google scholar
[14]
E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
CrossRef ADS Google scholar
[15]
T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
CrossRef ADS Google scholar
[16]
C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
CrossRef ADS Google scholar
[17]
J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. Commun. 10, 3771 (2019)
CrossRef ADS Google scholar
[18]
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef ADS Google scholar
[19]
D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments, Science 357(6355), 990 (2017)
CrossRef ADS Google scholar
[20]
V. Andreev and N. Hutzler, Improved limit on the electric dipole moment of the electron, Nature 562(7727), 355 (2018)
CrossRef ADS Google scholar
[21]
T. Momose, H. Hoshina, N. Sogoshi, H. Katsuki, T. Wakabayashi, and T. Shida, Tunneling chemical reactions in solid parahydrogen: A case of CD3+H2→CD3H+H at 5 K, J. Chem. Phys. 108(17), 7334 (1998)
CrossRef ADS Google scholar
[22]
H. Hoshina, M. Fushitani, T. Momose, and T. Shida, Tunneling chemical reactions in solid parahydrogen: Direct measurement of the rate constants of R+H2→RH+H (R=CD3,CD2H,CDH2,CH3) at 5 K, J. Chem. Phys. 120(8), 3706 (2004)
CrossRef ADS Google scholar
[23]
A. W. Jasper, S. J. Klippenstein, L. B. Harding, and B. Ruscic, Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition, J. Phys. Chem. A 111(19), 3932 (2007)
CrossRef ADS Google scholar
[24]
T. Momose, Y. Liu, S. Zhou, P. Djuricanin, and D. Carty, Manipulation of translational motion of methyl radicals by pulsed magnetic fields, Phys. Chem. Chem. Phys. 15(6), 1772 (2013)
CrossRef ADS Google scholar
[25]
Y. Liu, S. Zhou, W. Zhong, P. Djuricanin, and T. Momose, One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules, Phys. Rev. A 91(2), 021403 (2015)
CrossRef ADS Google scholar
[26]
B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
CrossRef ADS Google scholar
[27]
Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
CrossRef ADS Google scholar
[28]
N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
CrossRef ADS Google scholar
[29]
E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
CrossRef ADS Google scholar
[30]
E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
CrossRef ADS Google scholar
[31]
M. Jerkins, I. Chavez, U. Even, and M. Raizen, Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82(3), 033414 (2010)
CrossRef ADS Google scholar
[32]
K. Melin, P. Nagornykh, Y. Lu, L. Hillberry, Y. Xu, and M. Raizen, Observation of a quasi-one-dimensional variation of the Stern-Gerlach effect, Phys. Rev. A 99(6), 063417 (2019)
CrossRef ADS Google scholar
[33]
S. Bililign, B. C. Hattaway, and G. H. Jeung, Nonradiative energy transfer in Li∗(3p)-CH4 collisions, J. Phys. Chem. A 106(2), 222 (2002)
CrossRef ADS Google scholar
[34]
B. C. Hattaway, S. Bililign, L. Uhl, V. Ledentu, and G. H. Jeung, Energy transfer in Li(4p)+(Ar,H2,CH4) collisions, J. Chem. Phys. 120(4), 1739 (2004)
CrossRef ADS Google scholar
[35]
K. Luria, N. Lavie, and U. Even, Dielectric barrier discharge source for supersonic beams, Rev. Sci. Instrum. 80(10), 104102 (2009)
CrossRef ADS Google scholar
[36]
T. Tscherbul, H. G. Yu, and A. Dalgarno, Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap, Phys. Rev. Lett. 106(7), 073201 (2011)
CrossRef ADS Google scholar
[37]
T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
CrossRef ADS Google scholar
[38]
A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
CrossRef ADS Google scholar
[39]
M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH (2Σ+) by Li (2S), Phys. Rev. A 95(6), 063421 (2017)
CrossRef ADS Google scholar
[40]
D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, Observation of quantum diffractive collisions using shallow atomic traps, Phys. Rev. A 80(2), 022712 (2009)
CrossRef ADS Google scholar
[41]
Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1289 KB)

Accesses

Citations

Detail

Sections
Recommended

/