Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms
Yang Liu, Le Luo
Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms
Chemistry in the ultracold regime enables fully quantum-controlled interactions between atoms and molecules, leading to the discovery of the hidden mechanisms in chemical reactions which are usually curtained by thermal averaging in the high temperature. Recently a couple of diatomic molecules have been cooled to ultracold regime based on laser cooling techniques, but the chemistry associated with these simple molecules is highly limited. In comparison, free radicals play a major role in many important chemical reactions, but yet to be cooled to submillikelvin temperature. Here we propose a novel method of decelerating CH3, the simplest polyatomic free radical, with lithium atoms simultaneously by travelling wave magnetic decelerator. This scheme paves the way towards co-trapping CH3 and lithium, so that sympathetical cooling can be used to preparing ultracold free radical sample.
travelling wave magnetic decelerator / simultaneous deceleration / methyl radical
[1] |
M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
CrossRef
ADS
Google scholar
|
[2] |
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
CrossRef
ADS
Google scholar
|
[3] |
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef
ADS
Google scholar
|
[4] |
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
CrossRef
ADS
Google scholar
|
[5] |
A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
CrossRef
ADS
Google scholar
|
[6] |
A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
CrossRef
ADS
Google scholar
|
[7] |
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
CrossRef
ADS
Google scholar
|
[8] |
N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
CrossRef
ADS
Google scholar
|
[9] |
R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
CrossRef
ADS
Google scholar
|
[10] |
M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
CrossRef
ADS
Google scholar
|
[11] |
S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)
CrossRef
ADS
Google scholar
|
[12] |
B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
CrossRef
ADS
Google scholar
|
[13] |
O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
CrossRef
ADS
Google scholar
|
[14] |
E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
CrossRef
ADS
Google scholar
|
[15] |
T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
CrossRef
ADS
Google scholar
|
[16] |
C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
CrossRef
ADS
Google scholar
|
[17] |
J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. Commun. 10, 3771 (2019)
CrossRef
ADS
Google scholar
|
[18] |
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef
ADS
Google scholar
|
[19] |
D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments, Science 357(6355), 990 (2017)
CrossRef
ADS
Google scholar
|
[20] |
V. Andreev and N. Hutzler, Improved limit on the electric dipole moment of the electron, Nature 562(7727), 355 (2018)
CrossRef
ADS
Google scholar
|
[21] |
T. Momose, H. Hoshina, N. Sogoshi, H. Katsuki, T. Wakabayashi, and T. Shida, Tunneling chemical reactions in solid parahydrogen: A case of CD3+H2→CD3H+H at 5 K, J. Chem. Phys. 108(17), 7334 (1998)
CrossRef
ADS
Google scholar
|
[22] |
H. Hoshina, M. Fushitani, T. Momose, and T. Shida, Tunneling chemical reactions in solid parahydrogen: Direct measurement of the rate constants of R+H2→RH+H (R=CD3,CD2H,CDH2,CH3) at 5 K, J. Chem. Phys. 120(8), 3706 (2004)
CrossRef
ADS
Google scholar
|
[23] |
A. W. Jasper, S. J. Klippenstein, L. B. Harding, and B. Ruscic, Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition, J. Phys. Chem. A 111(19), 3932 (2007)
CrossRef
ADS
Google scholar
|
[24] |
T. Momose, Y. Liu, S. Zhou, P. Djuricanin, and D. Carty, Manipulation of translational motion of methyl radicals by pulsed magnetic fields, Phys. Chem. Chem. Phys. 15(6), 1772 (2013)
CrossRef
ADS
Google scholar
|
[25] |
Y. Liu, S. Zhou, W. Zhong, P. Djuricanin, and T. Momose, One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules, Phys. Rev. A 91(2), 021403 (2015)
CrossRef
ADS
Google scholar
|
[26] |
B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
CrossRef
ADS
Google scholar
|
[27] |
Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
CrossRef
ADS
Google scholar
|
[28] |
N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
CrossRef
ADS
Google scholar
|
[29] |
E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
CrossRef
ADS
Google scholar
|
[30] |
E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
CrossRef
ADS
Google scholar
|
[31] |
M. Jerkins, I. Chavez, U. Even, and M. Raizen, Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82(3), 033414 (2010)
CrossRef
ADS
Google scholar
|
[32] |
K. Melin, P. Nagornykh, Y. Lu, L. Hillberry, Y. Xu, and M. Raizen, Observation of a quasi-one-dimensional variation of the Stern-Gerlach effect, Phys. Rev. A 99(6), 063417 (2019)
CrossRef
ADS
Google scholar
|
[33] |
S. Bililign, B. C. Hattaway, and G. H. Jeung, Nonradiative energy transfer in Li∗(3p)-CH4 collisions, J. Phys. Chem. A 106(2), 222 (2002)
CrossRef
ADS
Google scholar
|
[34] |
B. C. Hattaway, S. Bililign, L. Uhl, V. Ledentu, and G. H. Jeung, Energy transfer in Li(4p)+(Ar,H2,CH4) collisions, J. Chem. Phys. 120(4), 1739 (2004)
CrossRef
ADS
Google scholar
|
[35] |
K. Luria, N. Lavie, and U. Even, Dielectric barrier discharge source for supersonic beams, Rev. Sci. Instrum. 80(10), 104102 (2009)
CrossRef
ADS
Google scholar
|
[36] |
T. Tscherbul, H. G. Yu, and A. Dalgarno, Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap, Phys. Rev. Lett. 106(7), 073201 (2011)
CrossRef
ADS
Google scholar
|
[37] |
T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
CrossRef
ADS
Google scholar
|
[38] |
A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
CrossRef
ADS
Google scholar
|
[39] |
M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH (2Σ+) by Li (2S), Phys. Rev. A 95(6), 063421 (2017)
CrossRef
ADS
Google scholar
|
[40] |
D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, Observation of quantum diffractive collisions using shallow atomic traps, Phys. Rev. A 80(2), 022712 (2009)
CrossRef
ADS
Google scholar
|
[41] |
Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |