Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides

Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai

PDF(933 KB)
PDF(933 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (1) : 13501. DOI: 10.1007/s11467-020-0991-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides

Author information +
History +

Abstract

Van der Waals (vdW) heterobilayers formed by two-dimensional (2D) transition metal dichalcogenides (TMDCs) created a promising platform for various electronic and optical properties. ab initio band results indicate that the band offset of type-II band alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer, instead of an external electric field. On the basis of symmetry analysis, the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined, and a four-level k·p model was developed to obtain the interlayer hopping. Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets. Moreover, the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.

Keywords

van der Waals heterostructures / transition metal dichalcogenides / interlayer coupling effects / k·p model / interlayer exciton

Cite this article

Download citation ▾
Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501 https://doi.org/10.1007/s11467-020-0991-3

References

[1]
K. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)
CrossRef ADS Google scholar
[2]
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat. Rev. Mater. 1(11), 16055 (2016)
CrossRef ADS Google scholar
[3]
X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
CrossRef ADS Google scholar
[4]
H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
CrossRef ADS Google scholar
[5]
C. Robert, D. Lagarde, F. Cadiz, G. Wang, B. Lassagne, T. Amand, A. Balocchi, P. Renucci, S. Tongay, B. Urbaszek, and X. Marie, Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B 93(20), 205423 (2016)
CrossRef ADS Google scholar
[6]
G. Moody, C. Kavir Dass, K. Hao, C.H. Chen, L.J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, and X. Li, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun. 6(1), 8315 (2015)
CrossRef ADS Google scholar
[7]
C. Mai, A. Barrette, Y. Yu, Y. G. Semenov, K. W. Kim, L. Cao, and K. Gundogdu, Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2, Nano Lett. 14(1), 202 (2014)
CrossRef ADS Google scholar
[8]
A. Singh, K. Tran, M. Kolarczik, J. Seifert, Y. Wang, K. Hao, D. Pleskot, N. M. Gabor, S. Helmrich, N. Owschimikow, U. Woggon, and X. Li, Long-lived valley polarization of intravalley trions in monolayer WSe2, Phys. Rev. Lett. 117(25), 257402 (2016)
CrossRef ADS Google scholar
[9]
H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-dimensional semiconductors, Natl. Sci. Rev. 2(1), 57 (2015)
CrossRef ADS Google scholar
[10]
A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2, Nat. Phys. 10(2), 130 (2014)
CrossRef ADS Google scholar
[11]
P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
CrossRef ADS Google scholar
[12]
L. A. Jauregui, A. Y. Joe, K. Pistunova, D. S. Wild, A. A. High, Y. Zhou, G. Scuri, K. De Greve, A. Sushko, C. H. Yu, T. Taniguchi, K. Watanabe, D. J. Needleman, M. D. Lukin, H. Park, and P. Kim, Electrical control of interlayer exciton dynamics in atomically thin heterostructures, Science 366(6467), 870 (2019)
CrossRef ADS Google scholar
[13]
Z. Wang, Y. H. Chiu, K. Honz, K. F. Mak, and J. Shan, Electrical tuning of interlayer exciton gases in WSe2 bilayers, Nano Lett. 18(1), 137 (2018)
CrossRef ADS Google scholar
[14]
I. Paradisanos, S. Shree, A. George, N. Leisgang, C. Robert, K. Watanabe, T. Taniguchi, R. J. Warburton, A. Turchanin, X. Marie, I. C. Gerber, and B. Urbaszek, Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition, Nat. Commun. 11(1), 2391 (2020)
CrossRef ADS Google scholar
[15]
W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
CrossRef ADS Google scholar
[16]
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
CrossRef ADS Google scholar
[17]
S. Wu, J. S. Ross, G. B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2, Nat. Phys. 9(3), 149 (2013)
CrossRef ADS Google scholar
[18]
X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nanotechnol. 9(9), 682 (2014)
CrossRef ADS Google scholar
[19]
P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures, Nat. Commun. 6(1), 6242 (2015)
CrossRef ADS Google scholar
[20]
P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351(6274), 688 (2016)
CrossRef ADS Google scholar
[21]
S. Gao, L. Yang, and C. D. Spataru, Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures, Nano Lett. 17(12), 7809 (2017)
CrossRef ADS Google scholar
[22]
P. Rivera, H. Yu, K. L. Seyler, N. P. Wilson, W. Yao, and X. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides, Nat. Nanotechnol. 13(11), 1004 (2018)
CrossRef ADS Google scholar
[23]
W. T. Hsu, B. H. Lin, L. S. Lu, M. H. Lee, M. W. Chu, L. J. Li, W. Yao, W. H. Chang, and C. K. Shih, Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin, Sci. Adv. 5(12), eaax7407 (2019)
CrossRef ADS Google scholar
[24]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[25]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[26]
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
CrossRef ADS Google scholar
[27]
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)
CrossRef ADS Google scholar
[28]
G. Graziano, J. Klimes, F. Fernandez-Alonso, and A. Michaelides, Improved description of soft layered materials with van der Waals density functional theory, J. Phys.: Condens. Matter 24(42), 424216 (2012)
CrossRef ADS Google scholar
[29]
G. B. Liu, D. Xiao, Y. Yao, X. Xu, and W. Yao, Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides, Chem. Soc. Rev. 44(9), 2643 (2015)
CrossRef ADS Google scholar
[30]
Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, and W. Yao, Topological mosaics in moiré superlattices of van der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017)
CrossRef ADS Google scholar
[31]
Z. Gong, G. B. Liu, H. Yu, D. Xiao, X. Cui, X. Xu, and W. Yao, Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenides bilayers, Nat. Commun. 4(1), 2053 (2013)
CrossRef ADS Google scholar
[32]
W. T. Hsu, B. H. Lin, L. S. Lu, M. H. Lee, M. W. Chu, L. J. Li, W. Yao, W. H. Chang, and C. K. Shih, Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin, Sci. Adv. 5(12), eaax7407 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(933 KB)

Accesses

Citations

Detail

Sections
Recommended

/