Nonadiabatic geometric quantum computation with optimal control on superconducting circuits

Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue

PDF(2248 KB)
PDF(2248 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (4) : 41503. DOI: 10.1007/s11467-020-0976-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonadiabatic geometric quantum computation with optimal control on superconducting circuits

Author information +
History +

Abstract

Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.

Video abstract

Keywords

nonadiabatic geometric quantum computation / superconducting circuits / optimal control

Cite this article

Download citation ▾
Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue. Nonadiabatic geometric quantum computation with optimal control on superconducting circuits. Front. Phys., 2020, 15(4): 41503 https://doi.org/10.1007/s11467-020-0976-2

References

[1]
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)
CrossRef ADS Google scholar
[2]
F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52(24), 2111 (1984)
CrossRef ADS Google scholar
[3]
Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
CrossRef ADS Google scholar
[4]
P. Solinas, P. Zanardi, and N. Zanghì,Robustness of non-Abelian holonomic quantum gates against parametric noise, Phys. Rev. A 70(4), 042316 (2004)
CrossRef ADS Google scholar
[5]
S.-L. Zhu and P. Zanardi, Geometric quantum gates that are robust against stochastic control errors, Phys. Rev. A 72, 020301(R) (2005)
CrossRef ADS Google scholar
[6]
P. Solinas, M. Sassetti, T. Truini, and N. Zanghì, On the stability of quantum holonomic gates, New J. Phys. 14(9), 093006 (2012)
CrossRef ADS Google scholar
[7]
M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, and D. M. Tong, Robustness of nonadiabatic holonomic gates, Phys. Rev. A 86(6), 062322 (2012)
CrossRef ADS Google scholar
[8]
X. B. Wang and M. Keiji, Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87(9), 097901 (2001)
CrossRef ADS Google scholar
[9]
S. L. Zhu and Z. D. Wang, Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89(9), 097902 (2002)
CrossRef ADS Google scholar
[10]
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)
CrossRef ADS Google scholar
[11]
T. Chen and Z. Y. Xue, Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10(5), 054051 (2018)
CrossRef ADS Google scholar
[12]
X. Y. Chen, T. Li, and Z. Q. Yin, Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin, Sci. Bull. 64(6), 380 (2019)
CrossRef ADS Google scholar
[13]
T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan, and N. T. Zinner, Realization of efficient quantum gates with a superconducting qubitqutrit circuit, Sci. Rep. 9(1), 13389 (2019)
CrossRef ADS Google scholar
[14]
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
CrossRef ADS Google scholar
[15]
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherencefree subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
CrossRef ADS Google scholar
[16]
G. Falci, R. Fazio, G. M. Palma, J. Siewert, and V. Vedral, Detection of geometric phases in superconducting nanocircuits, Nature 407(6802), 355 (2000)
CrossRef ADS Google scholar
[17]
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate, Nature 422(6930), 412 (2003)
CrossRef ADS Google scholar
[18]
P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, Observation of Berry’s phase in a solid-state qubit, Science 318(5858), 1889 (2007)
CrossRef ADS Google scholar
[19]
J. M. Cui, M. Z. Ai, R. He, Z. H. Qian, X. K. Qin, Y. F. Huang, Z. W. Zhou, C. F. Li, T. Tu, and G. C. Guo, Experimental demonstration of suppressing residual geometric dephasing, Sci. Bull. 64(23), 1757 (2019)
CrossRef ADS Google scholar
[20]
J. Chu, D. Li, X. Yang, S. Song, Z. Han, Z. Yang, Y. Dong, W. Zheng, Z. Wang, X. Yu, D. Lan, X. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)
CrossRef ADS Google scholar
[21]
Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124(23), 230503 (2020)
CrossRef ADS Google scholar
[22]
P. Z. Zhao, Z. Dong, Z. Zhang, G. Guo, D. M. Tong, and Y. Yin, Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, arXiv: 1909.09970 (2019)
[23]
S. B. Zheng, C. P. Yang, and F. Nori, Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts, Phys. Rev. A 93(3), 032313 (2016)
CrossRef ADS Google scholar
[24]
J. Jing, C. H. Lam, and L. A. Wu, Non-Abelian holonomic transformation in the presence of classical noise, Phys. Rev. A 95(1), 012334 (2017)
CrossRef ADS Google scholar
[25]
B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
CrossRef ADS Google scholar
[26]
S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)
CrossRef ADS Google scholar
[27]
T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)
CrossRef ADS Google scholar
[28]
M.-Z. Ai, S. Li, Z. Hou, R. He, Z.-H. Qian, Z.-Y. Xue, J.-M. Cui, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Experimental realization of nonadiabatic holonomic singlequbit quantum gates with optimal control in a trapped ion, arXiv: 2006.04609 (2020)
[29]
A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)
CrossRef ADS Google scholar
[30]
D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu�rin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)
CrossRef ADS Google scholar
[31]
M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch, Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf. 3, 37 (2017)
CrossRef ADS Google scholar
[32]
G. Bhole and J. A. Jones, Practical pulse engineering: Gradient ascent without matrix exponentiation, Front. Phys. 13(3), 130312 (2018)
CrossRef ADS Google scholar
[33]
G. Long, G. Feng, and P. Sprenger, Overcoming synthesizer phase noise in quantum sensing, Quantum Engineering 1(4), e27 (2019)
CrossRef ADS Google scholar
[34]
K. Li, Eliminating the noise from quantum computing hardware, Quantum Engineering 2(1), e28 (2020)
CrossRef ADS Google scholar
[35]
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
CrossRef ADS Google scholar
[36]
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
CrossRef ADS Google scholar
[37]
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
CrossRef ADS Google scholar
[38]
M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11(1), 369 (2020)
CrossRef ADS Google scholar
[39]
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef ADS Google scholar
[40]
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef ADS Google scholar
[41]
H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)
CrossRef ADS Google scholar
[42]
J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator, Phys. Rev. A 83(1), 012308 (2011)
CrossRef ADS Google scholar
[43]
T. H. Wang, Z. X. Zhang, L. Xiang, Z. H. Gong, J. L. Wu, and Y. Yin, Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories, Sci. China Phys. Mech. Astron. 61(4), 047411 (2018)
CrossRef ADS Google scholar
[44]
T. H. Wang, Z. X. Zhang, L. Xiang, Z. L. Jia, P. Duan, W. Z. Cai, Z. H. Gong, Z. W. Zong, M. M. Wu, J. L. Wu, L. Y. Sun, Y. Yin, and G. P. Guo, The experimental realization of highfidelity “shortcut-to-adiabaticity” quantum gates in a superconducting Xmon qubit, New J. Phys. 20(6), 065003 (2018)
CrossRef ADS Google scholar
[45]
F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood, Quantum logic gates for coupled superconducting phase qubits, Phys. Rev. Lett. 91(16), 167005 (2003)
CrossRef ADS Google scholar
[46]
L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature 467(7315), 574 (2010)
CrossRef ADS Google scholar
[47]
M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, et al., Demonstration of universal parametric entangling gates on a multi-qubit lattice, Sci. Adv. 4(2), eaao3603 (2018)
CrossRef ADS Google scholar
[48]
S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, et al., Parametrically activated entangling gates using transmon qubits, Phys. Rev. Appl. 10(3), 034050 (2018)
[49]
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2248 KB)

Accesses

Citations

Detail

Sections
Recommended

/