Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
Jing Xu, Sai Li, Tao Chen, Zheng-Yuan Xue
Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
nonadiabatic geometric quantum computation / superconducting circuits / optimal control
[1] |
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. Ser. A 392, 45 (1984)
CrossRef
ADS
Google scholar
|
[2] |
F. Wilczek and A. Zee, Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52(24), 2111 (1984)
CrossRef
ADS
Google scholar
|
[3] |
Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
CrossRef
ADS
Google scholar
|
[4] |
P. Solinas, P. Zanardi, and N. Zanghì,Robustness of non-Abelian holonomic quantum gates against parametric noise, Phys. Rev. A 70(4), 042316 (2004)
CrossRef
ADS
Google scholar
|
[5] |
S.-L. Zhu and P. Zanardi, Geometric quantum gates that are robust against stochastic control errors, Phys. Rev. A 72, 020301(R) (2005)
CrossRef
ADS
Google scholar
|
[6] |
P. Solinas, M. Sassetti, T. Truini, and N. Zanghì, On the stability of quantum holonomic gates, New J. Phys. 14(9), 093006 (2012)
CrossRef
ADS
Google scholar
|
[7] |
M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, and D. M. Tong, Robustness of nonadiabatic holonomic gates, Phys. Rev. A 86(6), 062322 (2012)
CrossRef
ADS
Google scholar
|
[8] |
X. B. Wang and M. Keiji, Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87(9), 097901 (2001)
CrossRef
ADS
Google scholar
|
[9] |
S. L. Zhu and Z. D. Wang, Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89(9), 097902 (2002)
CrossRef
ADS
Google scholar
|
[10] |
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)
CrossRef
ADS
Google scholar
|
[11] |
T. Chen and Z. Y. Xue, Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10(5), 054051 (2018)
CrossRef
ADS
Google scholar
|
[12] |
X. Y. Chen, T. Li, and Z. Q. Yin, Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin, Sci. Bull. 64(6), 380 (2019)
CrossRef
ADS
Google scholar
|
[13] |
T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan, and N. T. Zinner, Realization of efficient quantum gates with a superconducting qubitqutrit circuit, Sci. Rep. 9(1), 13389 (2019)
CrossRef
ADS
Google scholar
|
[14] |
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
CrossRef
ADS
Google scholar
|
[15] |
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherencefree subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
CrossRef
ADS
Google scholar
|
[16] |
G. Falci, R. Fazio, G. M. Palma, J. Siewert, and V. Vedral, Detection of geometric phases in superconducting nanocircuits, Nature 407(6802), 355 (2000)
CrossRef
ADS
Google scholar
|
[17] |
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate, Nature 422(6930), 412 (2003)
CrossRef
ADS
Google scholar
|
[18] |
P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Goppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff, Observation of Berry’s phase in a solid-state qubit, Science 318(5858), 1889 (2007)
CrossRef
ADS
Google scholar
|
[19] |
J. M. Cui, M. Z. Ai, R. He, Z. H. Qian, X. K. Qin, Y. F. Huang, Z. W. Zhou, C. F. Li, T. Tu, and G. C. Guo, Experimental demonstration of suppressing residual geometric dephasing, Sci. Bull. 64(23), 1757 (2019)
CrossRef
ADS
Google scholar
|
[20] |
J. Chu, D. Li, X. Yang, S. Song, Z. Han, Z. Yang, Y. Dong, W. Zheng, Z. Wang, X. Yu, D. Lan, X. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)
CrossRef
ADS
Google scholar
|
[21] |
Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124(23), 230503 (2020)
CrossRef
ADS
Google scholar
|
[22] |
P. Z. Zhao, Z. Dong, Z. Zhang, G. Guo, D. M. Tong, and Y. Yin, Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, arXiv: 1909.09970 (2019)
|
[23] |
S. B. Zheng, C. P. Yang, and F. Nori, Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts, Phys. Rev. A 93(3), 032313 (2016)
CrossRef
ADS
Google scholar
|
[24] |
J. Jing, C. H. Lam, and L. A. Wu, Non-Abelian holonomic transformation in the presence of classical noise, Phys. Rev. A 95(1), 012334 (2017)
CrossRef
ADS
Google scholar
|
[25] |
B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
CrossRef
ADS
Google scholar
|
[26] |
S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)
CrossRef
ADS
Google scholar
|
[27] |
T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)
CrossRef
ADS
Google scholar
|
[28] |
M.-Z. Ai, S. Li, Z. Hou, R. He, Z.-H. Qian, Z.-Y. Xue, J.-M. Cui, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Experimental realization of nonadiabatic holonomic singlequbit quantum gates with optimal control in a trapped ion, arXiv: 2006.04609 (2020)
|
[29] |
A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)
CrossRef
ADS
Google scholar
|
[30] |
D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu�rin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)
CrossRef
ADS
Google scholar
|
[31] |
M. H. Goerz, F. Motzoi, K. B. Whaley, and C. P. Koch, Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf. 3, 37 (2017)
CrossRef
ADS
Google scholar
|
[32] |
G. Bhole and J. A. Jones, Practical pulse engineering: Gradient ascent without matrix exponentiation, Front. Phys. 13(3), 130312 (2018)
CrossRef
ADS
Google scholar
|
[33] |
G. Long, G. Feng, and P. Sprenger, Overcoming synthesizer phase noise in quantum sensing, Quantum Engineering 1(4), e27 (2019)
CrossRef
ADS
Google scholar
|
[34] |
K. Li, Eliminating the noise from quantum computing hardware, Quantum Engineering 2(1), e28 (2020)
CrossRef
ADS
Google scholar
|
[35] |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
CrossRef
ADS
Google scholar
|
[36] |
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
CrossRef
ADS
Google scholar
|
[37] |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
CrossRef
ADS
Google scholar
|
[38] |
M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11(1), 369 (2020)
CrossRef
ADS
Google scholar
|
[39] |
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef
ADS
Google scholar
|
[40] |
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef
ADS
Google scholar
|
[41] |
H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)
CrossRef
ADS
Google scholar
|
[42] |
J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator, Phys. Rev. A 83(1), 012308 (2011)
CrossRef
ADS
Google scholar
|
[43] |
T. H. Wang, Z. X. Zhang, L. Xiang, Z. H. Gong, J. L. Wu, and Y. Yin, Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories, Sci. China Phys. Mech. Astron. 61(4), 047411 (2018)
CrossRef
ADS
Google scholar
|
[44] |
T. H. Wang, Z. X. Zhang, L. Xiang, Z. L. Jia, P. Duan, W. Z. Cai, Z. H. Gong, Z. W. Zong, M. M. Wu, J. L. Wu, L. Y. Sun, Y. Yin, and G. P. Guo, The experimental realization of highfidelity “shortcut-to-adiabaticity” quantum gates in a superconducting Xmon qubit, New J. Phys. 20(6), 065003 (2018)
CrossRef
ADS
Google scholar
|
[45] |
F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood, Quantum logic gates for coupled superconducting phase qubits, Phys. Rev. Lett. 91(16), 167005 (2003)
CrossRef
ADS
Google scholar
|
[46] |
L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconducting circuit, Nature 467(7315), 574 (2010)
CrossRef
ADS
Google scholar
|
[47] |
M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, et al., Demonstration of universal parametric entangling gates on a multi-qubit lattice, Sci. Adv. 4(2), eaao3603 (2018)
CrossRef
ADS
Google scholar
|
[48] |
S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, et al., Parametrically activated entangling gates using transmon qubits, Phys. Rev. Appl. 10(3), 034050 (2018)
|
[49] |
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |