Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings

Yang-Yang Fu , Jia-Qi Tao , Ai-Ling Song , You-Wen Liu , Ya-Dong Xu

Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52502

PDF (3216KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52502 DOI: 10.1007/s11467-020-0968-2
RESEARCH ARTICLE

Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings

Author information +
History +
PDF (3216KB)

Abstract

In this work, we designed and studied a feasible dual-layer binary metagrating, which can realize controllable asymmetric transmission and beam splitting with nearly perfect performance. Owing to ingenious geometry configuration, only one meta-atom is required to design for the metagrating system. By simply controlling air gap between dual-layer metagratings, high-efficiency beam splitting can be well switched from asymmetric transmission to symmetric transmission. The working principle lies on gap-induced diffraction channel transition for incident waves from opposite directions. The asymmetric/symmetric transmission can work in a certain frequency band and a wide incident range. Compared with previous methods using acoustic metasurfaces, our approach has the advantages of simple design and tunable property and shows promise for applications in wavefront manipulation, noise control and one-way propagation.

Keywords

beam splitting / asymmetric transmission / acoustic metagrating / binary design

Cite this article

Download citation ▾
Yang-Yang Fu, Jia-Qi Tao, Ai-Ling Song, You-Wen Liu, Ya-Dong Xu. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys., 2020, 15(5): 52502 DOI:10.1007/s11467-020-0968-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)

[2]

S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1(3), 16001 (2016)

[3]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 333 (2011)

[4]

S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, From single-dimensional to multidimensional manipulation of optical waves with metasurfaces, Adv. Mater. 31(16), 1802458 (2019)

[5]

B. Assouar, B. Liang, Y. Wu, Y. Li, J. Cheng, and Y. Jing, Acoustic metasurfaces, Nat. Rev. Mater. 3(12), 460 (2018)

[6]

Y. Li, B. Liang, Z. Gu, X. Zou, and J. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Sci. Rep. 3(1), 2546 (2013)

[7]

Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun. 5(1), 5553 (2014)

[8]

Y. Wang, Y. Cheng, and X. J. Liu, Modulation of acoustic waves by a broadband metagrating, Sci. Rep. 9(1), 7271 (2019)

[9]

Y. Tian, Q. Wei, Y. Cheng, and X. Liu, Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Appl. Phys. Lett. 110(19), 191901 (2017)

[10]

Y. Li and B. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108(6), 063502 (2016)

[11]

B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)

[12]

X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a soniccrystal- based acoustic diode, Phys. Rev. Lett. 106(8), 084301 (2011)

[13]

B. I. Popa and S. A. Cummer, Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun. 5(1), 3398 (2014)

[14]

Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)

[15]

Y. Wang, J. Xia, H. Sun, S. Yuan, Y. Ge, Q. Si, Y. Guan, and X. Liu, Multifunctional asymmetric sound manipulations by a passive phased array prism, Phys. Rev. Appl. 12(2), 024033 (2019)

[16]

Y. Zhu, X. Zou, B. Liang, and J. C. Cheng, Acoustic oneway open tunnel by using metasurface, Appl. Phys. Lett. 107(11), 113501 (2015)

[17]

Y. Ge, H. Sun, S. Yuan, and Y. Lai, Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms, Appl. Phys. Lett. 112(24), 243502 (2018)

[18]

C. Shen, Y. Xie, J. Li, S. A. Cummer, and Y. Jing, Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces, Appl. Phys. Lett. 108(22), 223502 (2016)

[19]

Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, and Y. Jing, Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett. 119(3), 035501 (2017)

[20]

F. Ju, Y. Tian, Y. Cheng, and X. Liu, Asymmetric acoustic transmission with a lossy gradient-index metasurface, Appl. Phys. Lett. 113(12), 121901 (2018)

[21]

B. Liu and Y. Jiang, Controllable asymmetric transmission via gap-tunable acoustic metasurface, Appl. Phys. Lett. 112(17), 173503 (2018)

[22]

J. Xia, X. Zhang, H. Sun, S. Yuan, J. Qian, and Y. Ge, Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces, Phys. Rev. Appl. 10(1), 014016 (2018)

[23]

N. J. R. K. Gerard, H. Cui, C. Shen, Y. Xie, S. Cummer, X. Zheng, and Y. Jing, Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz, Appl. Phys. Lett. 114(23), 231902 (2019)

[24]

C. Shen and S. A. Cummer, Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl. 9(5), 054009 (2018)

[25]

Y. Cao, Y. Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, and Y. Xu, Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces, Phys. Rev. Appl. 12(2), 024006 (2019)

[26]

Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Reversal of transmission and reflection based on acoustic metagratings with integer parity design, Nat. Commun. 10(1), 2326 (2019)

[27]

Y. Fu, Y. Cao, and Y. Xu, Multifunctional reflection in acoustic metagratings with simplified design, Appl. Phys. Lett. 114(5), 053502 (2019)

[28]

Y. Jin, X. Fang, Y. Li, and D. Torrent, Engineered diffraction gratings for acoustic cloaking, Phys. Rev. Appl. 11(1), 011004 (2019)

[29]

C. Shen, A. Díaz-Rubio, J. Li, and S. A. Cummer, A surface impedance-based three-channel acoustic metasurface retroreflector, Appl. Phys. Lett. 112(18), 183503 (2018)

[30]

B. Y. Xie, H. Cheng, K. Tang, Z. Y. Liu, S. Q. Chen, and J. G. Tian, Multiband asymmetric transmission of airborne sound by coded metasurfaces, Phys. Rev. Appl. 7(2), 024010 (2017)

[31]

H. Ni, X. Fang, Z. Hou, Y. Li, and B. Assouar, Highefficiency anomalous splitter by acoustic meta-grating, Phys. Rev. B 100(10), 104104 (2019)

[32]

Z. Jia, J. Li, C. Shen, Y. Xie, and S. A. Cummer, Systematic design of broadband path-coiling acoustic metamaterials, J. Appl. Phys. 123(2), 025101 (2018)

[33]

J. Li, C. Shen, A. Díaz-Rubio, S. Tretyakov, and S. A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9(1), 1342 (2018)

[34]

H. Zhang, Y. Zhu, B. Liang, J. Yang, J. Yang, and J. C. Cheng, Omnidirectional ventilated acoustic barrier, Appl. Phys. Lett. 111 (20), 203502 (2017)

[35]

L. Cao, Y. Xu, B. Assouar, and Z. Yang, Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces, Appl. Phys. Lett. 113(18), 183506 (2018)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3216KB)

1600

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/