Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings

Yang-Yang Fu, Jia-Qi Tao, Ai-Ling Song, You-Wen Liu, Ya-Dong Xu

PDF(3216 KB)
PDF(3216 KB)
Front. Phys. ›› 2020, Vol. 15 ›› Issue (5) : 52502. DOI: 10.1007/s11467-020-0968-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings

Author information +
History +

Abstract

In this work, we designed and studied a feasible dual-layer binary metagrating, which can realize controllable asymmetric transmission and beam splitting with nearly perfect performance. Owing to ingenious geometry configuration, only one meta-atom is required to design for the metagrating system. By simply controlling air gap between dual-layer metagratings, high-efficiency beam splitting can be well switched from asymmetric transmission to symmetric transmission. The working principle lies on gap-induced diffraction channel transition for incident waves from opposite directions. The asymmetric/symmetric transmission can work in a certain frequency band and a wide incident range. Compared with previous methods using acoustic metasurfaces, our approach has the advantages of simple design and tunable property and shows promise for applications in wavefront manipulation, noise control and one-way propagation.

Keywords

beam splitting / asymmetric transmission / acoustic metagrating / binary design

Cite this article

Download citation ▾
Yang-Yang Fu, Jia-Qi Tao, Ai-Ling Song, You-Wen Liu, Ya-Dong Xu. Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys., 2020, 15(5): 52502 https://doi.org/10.1007/s11467-020-0968-2

References

[1]
Y. Xu, Y. Fu, and H. Chen, Planar gradient metamaterials, Nat. Rev. Mater. 1(12), 16067 (2016)
CrossRef ADS Google scholar
[2]
S. A. Cummer, J. Christensen, and A. Alù, Controlling sound with acoustic metamaterials, Nat. Rev. Mater. 1(3), 16001 (2016)
CrossRef ADS Google scholar
[3]
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054), 333 (2011)
CrossRef ADS Google scholar
[4]
S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, From single-dimensional to multidimensional manipulation of optical waves with metasurfaces, Adv. Mater. 31(16), 1802458 (2019)
CrossRef ADS Google scholar
[5]
B. Assouar, B. Liang, Y. Wu, Y. Li, J. Cheng, and Y. Jing, Acoustic metasurfaces, Nat. Rev. Mater. 3(12), 460 (2018)
CrossRef ADS Google scholar
[6]
Y. Li, B. Liang, Z. Gu, X. Zou, and J. Cheng, Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces, Sci. Rep. 3(1), 2546 (2013)
CrossRef ADS Google scholar
[7]
Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface, Nat. Commun. 5(1), 5553 (2014)
CrossRef ADS Google scholar
[8]
Y. Wang, Y. Cheng, and X. J. Liu, Modulation of acoustic waves by a broadband metagrating, Sci. Rep. 9(1), 7271 (2019)
CrossRef ADS Google scholar
[9]
Y. Tian, Q. Wei, Y. Cheng, and X. Liu, Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude, Appl. Phys. Lett. 110(19), 191901 (2017)
CrossRef ADS Google scholar
[10]
Y. Li and B. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108(6), 063502 (2016)
CrossRef ADS Google scholar
[11]
B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, An acoustic rectifier, Nat. Mater. 9(12), 989 (2010)
CrossRef ADS Google scholar
[12]
X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. F. Chen, Tunable unidirectional sound propagation through a soniccrystal- based acoustic diode, Phys. Rev. Lett. 106(8), 084301 (2011)
CrossRef ADS Google scholar
[13]
B. I. Popa and S. A. Cummer, Non-reciprocal and highly nonlinear active acoustic metamaterials, Nat. Commun. 5(1), 3398 (2014)
CrossRef ADS Google scholar
[14]
Y. Fu, L. Xu, Z. Hang, and H. Chen, Unidirectional transmission using array of zero-refractive-index metamaterials, Appl. Phys. Lett. 104(19), 193509 (2014)
CrossRef ADS Google scholar
[15]
Y. Wang, J. Xia, H. Sun, S. Yuan, Y. Ge, Q. Si, Y. Guan, and X. Liu, Multifunctional asymmetric sound manipulations by a passive phased array prism, Phys. Rev. Appl. 12(2), 024033 (2019)
CrossRef ADS Google scholar
[16]
Y. Zhu, X. Zou, B. Liang, and J. C. Cheng, Acoustic oneway open tunnel by using metasurface, Appl. Phys. Lett. 107(11), 113501 (2015)
CrossRef ADS Google scholar
[17]
Y. Ge, H. Sun, S. Yuan, and Y. Lai, Broadband unidirectional and omnidirectional bidirectional acoustic insulation through an open window structure with a metasurface of ultrathin hooklike meta-atoms, Appl. Phys. Lett. 112(24), 243502 (2018)
CrossRef ADS Google scholar
[18]
C. Shen, Y. Xie, J. Li, S. A. Cummer, and Y. Jing, Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces, Appl. Phys. Lett. 108(22), 223502 (2016)
CrossRef ADS Google scholar
[19]
Y. Li, C. Shen, Y. Xie, J. Li, W. Wang, S. A. Cummer, and Y. Jing, Tunable asymmetric transmission via lossy acoustic metasurfaces, Phys. Rev. Lett. 119(3), 035501 (2017)
CrossRef ADS Google scholar
[20]
F. Ju, Y. Tian, Y. Cheng, and X. Liu, Asymmetric acoustic transmission with a lossy gradient-index metasurface, Appl. Phys. Lett. 113(12), 121901 (2018)
CrossRef ADS Google scholar
[21]
B. Liu and Y. Jiang, Controllable asymmetric transmission via gap-tunable acoustic metasurface, Appl. Phys. Lett. 112(17), 173503 (2018)
CrossRef ADS Google scholar
[22]
J. Xia, X. Zhang, H. Sun, S. Yuan, J. Qian, and Y. Ge, Broadband tunable acoustic asymmetric focusing lens from dual-layer metasurfaces, Phys. Rev. Appl. 10(1), 014016 (2018)
CrossRef ADS Google scholar
[23]
N. J. R. K. Gerard, H. Cui, C. Shen, Y. Xie, S. Cummer, X. Zheng, and Y. Jing, Fabrication and experimental demonstration of a hybrid resonant acoustic gradient index metasurface at 40 kHz, Appl. Phys. Lett. 114(23), 231902 (2019)
CrossRef ADS Google scholar
[24]
C. Shen and S. A. Cummer, Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl. 9(5), 054009 (2018)
CrossRef ADS Google scholar
[25]
Y. Cao, Y. Fu, Q. Zhou, X. Ou, L. Gao, H. Chen, and Y. Xu, Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces, Phys. Rev. Appl. 12(2), 024006 (2019)
CrossRef ADS Google scholar
[26]
Y. Fu, C. Shen, Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, and Y. Xu, Reversal of transmission and reflection based on acoustic metagratings with integer parity design, Nat. Commun. 10(1), 2326 (2019)
CrossRef ADS Google scholar
[27]
Y. Fu, Y. Cao, and Y. Xu, Multifunctional reflection in acoustic metagratings with simplified design, Appl. Phys. Lett. 114(5), 053502 (2019)
CrossRef ADS Google scholar
[28]
Y. Jin, X. Fang, Y. Li, and D. Torrent, Engineered diffraction gratings for acoustic cloaking, Phys. Rev. Appl. 11(1), 011004 (2019)
CrossRef ADS Google scholar
[29]
C. Shen, A. Díaz-Rubio, J. Li, and S. A. Cummer, A surface impedance-based three-channel acoustic metasurface retroreflector, Appl. Phys. Lett. 112(18), 183503 (2018)
CrossRef ADS Google scholar
[30]
B. Y. Xie, H. Cheng, K. Tang, Z. Y. Liu, S. Q. Chen, and J. G. Tian, Multiband asymmetric transmission of airborne sound by coded metasurfaces, Phys. Rev. Appl. 7(2), 024010 (2017)
CrossRef ADS Google scholar
[31]
H. Ni, X. Fang, Z. Hou, Y. Li, and B. Assouar, Highefficiency anomalous splitter by acoustic meta-grating, Phys. Rev. B 100(10), 104104 (2019)
CrossRef ADS Google scholar
[32]
Z. Jia, J. Li, C. Shen, Y. Xie, and S. A. Cummer, Systematic design of broadband path-coiling acoustic metamaterials, J. Appl. Phys. 123(2), 025101 (2018)
CrossRef ADS Google scholar
[33]
J. Li, C. Shen, A. Díaz-Rubio, S. Tretyakov, and S. A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9(1), 1342 (2018)
CrossRef ADS Google scholar
[34]
H. Zhang, Y. Zhu, B. Liang, J. Yang, J. Yang, and J. C. Cheng, Omnidirectional ventilated acoustic barrier, Appl. Phys. Lett. 111 (20), 203502 (2017)
CrossRef ADS Google scholar
[35]
L. Cao, Y. Xu, B. Assouar, and Z. Yang, Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces, Appl. Phys. Lett. 113(18), 183506 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(3216 KB)

Accesses

Citations

Detail

Sections
Recommended

/