Experimental search for dark matter in China
Li Zhao, Jianglai Liu
Experimental search for dark matter in China
The nature of dark matter is one of the greatest mysteries in modern physics and astronomy. A wide variety of experiments have been carried out worldwide to search for the evidence of particle dark matter. Chinese physicists started experimental search for dark matter about ten years ago, and have produced results with high scientific impact. In this paper, we present an overview of the dark matter program in China, and discuss recent results and future directions.
dark matter / weakly interacting massive particle (WIMP) / direct detection / indirect detection / Xenon / Germanium
[1] |
F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. 86, 217 (1937)
CrossRef
ADS
Google scholar
|
[2] |
V. C. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. 159, 379 (1970)
CrossRef
ADS
Google scholar
|
[3] |
S. W. Allen, A. E. Evrard, and A. B. Mantz, Cosmological parameters from observations of galaxy clusters, Annu. Rev. Astron. Astrophys. 49(1), 409 (2011)
CrossRef
ADS
Google scholar
|
[4] |
E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley Publishing Company, 1990
|
[5] |
P. A. R. Ade,
|
[6] |
R. Oerter, The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics, Penguin Group, 2006
|
[7] |
G. Aad,
|
[8] |
S. Chatrchyan,
|
[9] |
G. Kane and M. Shifman (Eds.), The Supersymmetric World — The Beginnings of the Theory, World Scientific, Singapore, 2000
CrossRef
ADS
Google scholar
|
[10] |
N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429(3–4), 263 (1998)
CrossRef
ADS
Google scholar
|
[11] |
L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83(17), 3370 (1999)
CrossRef
ADS
Google scholar
|
[12] |
G. Jungman, M. Kamionkowski, K. Griest, and S. D. Matters, Supersymmetric dark matter, Phys. Rep. 267(5–6), 195 (1996)
CrossRef
ADS
Google scholar
|
[13] |
G. Servant and T. M. P. Tait, Is the lightest Kaluza–Klein particle a viable dark matter candidate? Nucl. Phys. B 650(1–2), 391 (2003)
CrossRef
ADS
Google scholar
|
[14] |
M. C. Smith, G. R. Ruchti, A. Helmi, R. F. G. Wyse, J. P. Fulbright, K. C. Freeman, J. F. Navarro, G. M. Seabroke, M. Steinmetz, M. Williams, O. Bienayme, J. Binney, J. Bland-Hawthorn, W. Dehnen, B. K. Gibson, G. Gilmore, E. K. Grebel, U. Munari, Q. A. Parker, R. D. Scholz, A. Siebert, F. G. Watson, and T. Zwitter, The RAVE survey: Constraining the local galactic escape speed, Mon. Not. R. Astron. Soc. 379(2), 755 (2007)
CrossRef
ADS
Google scholar
|
[15] |
C. Savage, K. Freese, and P. Gondolo, Annual modulation of dark matter in the presence of streams, Phys. Rev. D 74(4), 043531 (2006)
CrossRef
ADS
Google scholar
|
[16] |
R. Agnese,
|
[17] |
Z. Ahmed,
|
[18] |
G. Angloher,
|
[19] |
C. E. Aalseth,
CrossRef
ADS
Google scholar
|
[20] |
K. J. Kang,
|
[21] |
E. Aprile,
|
[22] |
D. S. Akerib,
|
[23] |
X. G. Cao,
|
[24] |
T. Alexander,
|
[25] |
M. Boulay, B. Cai, and the Deap/Clean Collaboration, Dark matter search at SNOLAB with DEAP-1 and DEAP/CLEAN-3600, J. Phys. Conf. Ser. 136(4), 042081 (2008)
CrossRef
ADS
Google scholar
|
[26] |
A. Tan,
|
[27] |
X. Cui,
|
[28] |
E. Aprile,
|
[29] |
P. Agnes,
|
[30] |
A. H. Abdelhameed,
|
[31] |
J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89(2), 023524 (2014)
CrossRef
ADS
Google scholar
|
[32] |
K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys. Conf. Ser. 203, 012028 (2010)
CrossRef
ADS
Google scholar
|
[33] |
Y. C. Wu, X. Q. Hao, Q. Yue, Y. J. Li, J. P. Cheng, K. J. Kang, Y. H. Chen, J. Li, J. M. Li, Y. L. Li, S. K. Liu, H. Ma, J. B. Ren, M. B. Shen, J. M. Wang, S. Y. Wu, T. Xue, N. Yi, X. H. Zeng, Z. Zeng, and Z. H. Zhu, Measurement of cosmic ray flux in the China JinPing underground laboratory, Chin. Phys. C 37(8), 086001 (2013)
CrossRef
ADS
Google scholar
|
[34] |
J. P. Cheng, K. J. Kang, J. M. Li, J. Li, Y. J. Li, Q. Yue, Z. Zeng, Y. H. Chen, S. Y. Wu, X. D. Ji, and H. T. Wong, The China Jinping underground laboratory and its early science, Annu. Rev. Nucl. Part. Sci. 67(1), 231 (2017)
CrossRef
ADS
Google scholar
|
[35] |
J. Angle,
|
[36] |
G. J. Alner,
|
[37] |
M. J. Xiao,
|
[38] |
X. Xiao,
|
[39] |
R. Bernabei,
CrossRef
ADS
Google scholar
|
[40] |
C. E. Aalseth,
|
[41] |
T. Zhang, C. Fu, X. Ji, J. Liu, X. Liu, X. Wang, C. Yao, and X. Yuan, Low background stainless steel for the pressure vessel in the PandaX-II dark matter experiment, J. Instrum. 11(09), T09004 (2016)
CrossRef
ADS
Google scholar
|
[42] |
D. S. Akerib,
|
[43] |
C. Fu,
CrossRef
ADS
Google scholar
|
[44] |
D. S. Akerib,
|
[45] |
E. Aprile,
|
[46] |
D. S. Akerib,
|
[47] |
S. Weinberg, A new light boson? Phys. Rev. Lett. 40(4), 223 (1978)
CrossRef
ADS
Google scholar
|
[48] |
F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40(5), 279 (1978)
CrossRef
ADS
Google scholar
|
[49] |
C. Fu,
CrossRef
ADS
Google scholar
|
[50] |
X. Ren,
|
[51] |
A. Kamada, M. Kaplinghat, A. B. Pace, and H. B. Yu, Self-interacting dark matter can explain diverse galactic rotation curves, Phys. Rev. Lett. 119(11), 111102 (2017)
CrossRef
ADS
Google scholar
|
[52] |
J. Xia,
|
[53] |
K. Ni,
|
[54] |
H. Zhang,
|
[55] |
J. Liu, X. Chen, and X. Ji, Current status of direct dark matter detection experiments, Nat. Phys. 13(3), 212 (2017)
CrossRef
ADS
Google scholar
|
[56] |
W. Zhao,
CrossRef
ADS
Google scholar
|
[57] |
W. Zhao,
|
[58] |
H. B. Li,
|
[59] |
Q. Yue,
|
[60] |
L. T. Yang,
|
[61] |
W. Zhao,
|
[62] |
C. E. Aalseth,
|
[63] |
L. T. Yang,
|
[64] |
M. Kobayashi,
|
[65] |
M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, Migdal effect in dark matter direct detection experiments, J. High Energy Phys. 2018(3), 194 (2018)
CrossRef
ADS
Google scholar
|
[66] |
R. Agnese,
|
[67] |
H. Jiang,
|
[68] |
E. Armengaud,
CrossRef
ADS
Google scholar
|
[69] |
Z. Z. Liu,
|
[70] |
S. K. Liu,
|
[71] |
Y. Wang,
|
[72] |
W. Li,
|
[73] |
Z. She,
|
[74] |
O. Adriani,
|
[75] |
S. Abdollahi,
|
[76] |
M. Aguilar,
|
[77] |
O. Adriani,
|
[78] |
E. S. Seo,
CrossRef
ADS
Google scholar
|
[79] |
O. A. Driani,
|
[80] |
J. Chang,
|
[81] |
G. Ambrosi,
CrossRef
ADS
Google scholar
|
[82] |
Y. Z. Fan, W. C. Huang, M. Spinrath, Y. L. S. Tsai, and Q. Yuan, A model explaining neutrino masses and the DAMPE cosmic ray electron excess, Phys. Lett. B 781, 83 (2018)
CrossRef
ADS
Google scholar
|
[83] |
P. H. Gu and X. G. He, Electrophilic dark matter with dark photon: From DAMPE to direct detection, Phys. Lett. B 778, 292 (2018)
CrossRef
ADS
Google scholar
|
[84] |
P. Athron, C. Balazs, A. Fowlie, and Y. Zhang, Modelindependent analysis of the DAMPE excess, J. High Energy Phys. 2018(2), 121 (2018)
CrossRef
ADS
Google scholar
|
[85] |
T. Li, N. Okada, and Q. Shafi, Scalar dark matter, typeII seesaw and the DAMPE cosmic ray e+e– excess, Phys. Lett. B 779, 130 (2018)
CrossRef
ADS
Google scholar
|
[86] |
G. Liu, F. Wang, W. Wang, and J. M. Yang, Explaining DAMPe results by dark matter with hierarchical leptonspecific Yukawa interactions, Chin. Phys. C 42(3), 035101 (2018)
CrossRef
ADS
Google scholar
|
[87] |
S. Ge, H. J. He, and Y. C. Wang, Flavor structure of the cosmic-ray electron/positron excesses at DAMPE, Phys. Lett. B 781, 88 (2018)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |